דילוג לתוכן העיקרי
פרק לגורמים
Tick mark Image
הערך
Tick mark Image

בעיות דומות מחיפוש באינטרנט

שתף

-a^{2}-a+3=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎, כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
a=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 3}}{2\left(-1\right)}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
a=\frac{-\left(-1\right)±\sqrt{1+4\times 3}}{2\left(-1\right)}
הכפל את ‎-4 ב- ‎-1.
a=\frac{-\left(-1\right)±\sqrt{1+12}}{2\left(-1\right)}
הכפל את ‎4 ב- ‎3.
a=\frac{-\left(-1\right)±\sqrt{13}}{2\left(-1\right)}
הוסף את ‎1 ל- ‎12.
a=\frac{1±\sqrt{13}}{2\left(-1\right)}
ההופכי של ‎-1 הוא ‎1.
a=\frac{1±\sqrt{13}}{-2}
הכפל את ‎2 ב- ‎-1.
a=\frac{\sqrt{13}+1}{-2}
כעת פתור את המשוואה a=\frac{1±\sqrt{13}}{-2} כאשר ± כולל סימן חיבור. הוסף את ‎1 ל- ‎\sqrt{13}.
a=\frac{-\sqrt{13}-1}{2}
חלק את ‎1+\sqrt{13} ב- ‎-2.
a=\frac{1-\sqrt{13}}{-2}
כעת פתור את המשוואה a=\frac{1±\sqrt{13}}{-2} כאשר ± כולל סימן חיסור. החסר ‎\sqrt{13} מ- ‎1.
a=\frac{\sqrt{13}-1}{2}
חלק את ‎1-\sqrt{13} ב- ‎-2.
-a^{2}-a+3=-\left(a-\frac{-\sqrt{13}-1}{2}\right)\left(a-\frac{\sqrt{13}-1}{2}\right)
פרק את הביטוי המקורי לגורמים באמצעות ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎. השתמש ב- ‎\frac{-1-\sqrt{13}}{2} במקום x_{1} וב- ‎\frac{-1+\sqrt{13}}{2} במקום x_{2}.