דילוג לתוכן העיקרי
הערך
Tick mark Image
פרק לגורמים
Tick mark Image

שתף

3\times \frac{\left(7+2\sqrt{10}\right)^{2}}{3^{2}}+4\times \frac{7+2\sqrt{10}}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
כדי להעלות את \frac{7+2\sqrt{10}}{3} בחזקה, העלה גם המונה וגם את המכנה בחזקה ולאחר מכן בצע חילוק.
\frac{3\left(7+2\sqrt{10}\right)^{2}}{3^{2}}+4\times \frac{7+2\sqrt{10}}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
בטא את ‎3\times \frac{\left(7+2\sqrt{10}\right)^{2}}{3^{2}} כשבר אחד.
\frac{\left(2\sqrt{10}+7\right)^{2}}{3}+4\times \frac{7+2\sqrt{10}}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
ביטול ‎3 גם במונה וגם במכנה.
\frac{\left(2\sqrt{10}+7\right)^{2}}{3}+\frac{4\left(7+2\sqrt{10}\right)}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
בטא את ‎4\times \frac{7+2\sqrt{10}}{3} כשבר אחד.
\frac{\left(2\sqrt{10}+7\right)^{2}}{3}+\frac{4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
הכפל את ‎\frac{4\left(7+2\sqrt{10}\right)}{3} ב- ‎\frac{7-2\sqrt{10}}{3} על-ידי הכפלת המונה במונה והמכנה במכנה.
\frac{3\left(2\sqrt{10}+7\right)^{2}}{3\times 3}+\frac{4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
כדי לחבר או להחסיר ביטויים, הרחב אותם כדי ליצור עבורם מכנה זהה. המכפלה המשותפת הקטנה ביותר של ‎3 ו- ‎3\times 3 היא 3\times 3. הכפל את ‎\frac{\left(2\sqrt{10}+7\right)^{2}}{3} ב- ‎\frac{3}{3}.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
מכיוון ש- \frac{3\left(2\sqrt{10}+7\right)^{2}}{3\times 3} ו- \frac{4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3} כוללים מכנה זהה, חבר אותם על-ידי חיבור המונים שלהם.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \frac{\left(7-2\sqrt{10}\right)^{2}}{3^{2}}
כדי להעלות את \frac{7-2\sqrt{10}}{3} בחזקה, העלה גם המונה וגם את המכנה בחזקה ולאחר מכן בצע חילוק.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{3\left(7-2\sqrt{10}\right)^{2}}{3^{2}}
בטא את ‎3\times \frac{\left(7-2\sqrt{10}\right)^{2}}{3^{2}} כשבר אחד.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{\left(-2\sqrt{10}+7\right)^{2}}{3}
ביטול ‎3 גם במונה וגם במכנה.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{4\left(\sqrt{10}\right)^{2}-28\sqrt{10}+49}{3}
השתמש בבינום של ניוטון \left(a+b\right)^{2}=a^{2}+2ab+b^{2} כדי להרחיב את ‎\left(-2\sqrt{10}+7\right)^{2}.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{4\times 10-28\sqrt{10}+49}{3}
הריבוע של ‎\sqrt{10} הוא ‎10.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{40-28\sqrt{10}+49}{3}
הכפל את ‎4 ו- ‎10 כדי לקבל ‎40.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
חבר את ‎40 ו- ‎49 כדי לקבל ‎89.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{3\left(89-28\sqrt{10}\right)}{3\times 3}
כדי לחבר או להחסיר ביטויים, הרחב אותם כדי ליצור עבורם מכנה זהה. המכפלה המשותפת הקטנה ביותר של ‎3\times 3 ו- ‎3 היא 3\times 3. הכפל את ‎\frac{89-28\sqrt{10}}{3} ב- ‎\frac{3}{3}.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)-3\left(89-28\sqrt{10}\right)}{3\times 3}
מכיוון ש- \frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3} ו- \frac{3\left(89-28\sqrt{10}\right)}{3\times 3} כוללים מכנה זהה, חסר אותם על-ידי חיסור המונים שלהם.
\frac{3\left(4\left(\sqrt{10}\right)^{2}+28\sqrt{10}+49\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
השתמש בבינום של ניוטון \left(a+b\right)^{2}=a^{2}+2ab+b^{2} כדי להרחיב את ‎\left(2\sqrt{10}+7\right)^{2}.
\frac{3\left(4\times 10+28\sqrt{10}+49\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
הריבוע של ‎\sqrt{10} הוא ‎10.
\frac{3\left(40+28\sqrt{10}+49\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
הכפל את ‎4 ו- ‎10 כדי לקבל ‎40.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
חבר את ‎40 ו- ‎49 כדי לקבל ‎89.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{9}-\frac{89-28\sqrt{10}}{3}
הכפל את ‎3 ו- ‎3 כדי לקבל ‎9.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{9}-\frac{3\left(89-28\sqrt{10}\right)}{9}
כדי לחבר או להחסיר ביטויים, הרחב אותם כדי ליצור עבורם מכנה זהה. המכפלה המשותפת הקטנה ביותר של ‎9 ו- ‎3 היא 9. הכפל את ‎\frac{89-28\sqrt{10}}{3} ב- ‎\frac{3}{3}.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)-3\left(89-28\sqrt{10}\right)}{9}
מכיוון ש- \frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{9} ו- \frac{3\left(89-28\sqrt{10}\right)}{9} כוללים מכנה זהה, חסר אותם על-ידי חיסור המונים שלהם.
\frac{267+84\sqrt{10}+196-56\sqrt{10}+56\sqrt{10}-160-267+84\sqrt{10}}{9}
בצע את פעולות הכפל ב- ‎3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)-3\left(89-28\sqrt{10}\right).
\frac{36+168\sqrt{10}}{9}
בצע את החישובים ב- ‎267+84\sqrt{10}+196-56\sqrt{10}+56\sqrt{10}-160-267+84\sqrt{10}.