פתור עבור x (complex solution)
x=\frac{-\sqrt{2}i+1}{3}\approx 0.333333333-0.471404521i
x=5
x=\frac{1+\sqrt{2}i}{3}\approx 0.333333333+0.471404521i
x=-1
פתור עבור x
x=-1
x=5
גרף
שתף
הועתק ללוח
±\frac{5}{3},±5,±\frac{1}{3},±1
לפי משפט השורש הרציונלי, כל השורשים הרציונליים של פולינום הם בצורה \frac{p}{q}, כאשר p מחלק את האיבר הקבוע -5 ו- q מחלק את המקדם המוביל 3. פרט את כל המועמדים \frac{p}{q}.
x=-1
מצא שורש כזה בכך שתנסה את כל ערכי המספרים השלמים, החל מהערך הקטן ביותר לפי ערך מוחלט. אם לא נמצאו שורשי מספרים שלמים, נסה שברים.
3x^{3}-17x^{2}+11x-5=0
לפי משפט הגורמים , x-k הוא גורם של הפולינום עבור כל שורש k. חלק את 3x^{4}-14x^{3}-6x^{2}+6x-5 ב- x+1 כדי לקבל 3x^{3}-17x^{2}+11x-5. פתור את המשוואה כאשר התוצאה שווה ל 0.
±\frac{5}{3},±5,±\frac{1}{3},±1
לפי משפט השורש הרציונלי, כל השורשים הרציונליים של פולינום הם בצורה \frac{p}{q}, כאשר p מחלק את האיבר הקבוע -5 ו- q מחלק את המקדם המוביל 3. פרט את כל המועמדים \frac{p}{q}.
x=5
מצא שורש כזה בכך שתנסה את כל ערכי המספרים השלמים, החל מהערך הקטן ביותר לפי ערך מוחלט. אם לא נמצאו שורשי מספרים שלמים, נסה שברים.
3x^{2}-2x+1=0
לפי משפט הגורמים , x-k הוא גורם של הפולינום עבור כל שורש k. חלק את 3x^{3}-17x^{2}+11x-5 ב- x-5 כדי לקבל 3x^{2}-2x+1. פתור את המשוואה כאשר התוצאה שווה ל 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\times 1}}{2\times 3}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. החלף את 3 ב- a, את -2 ב- b ואת 1 ב- c בנוסחה הריבועית.
x=\frac{2±\sqrt{-8}}{6}
בצע את החישובים.
x=\frac{-\sqrt{2}i+1}{3} x=\frac{1+\sqrt{2}i}{3}
פתור את המשוואה 3x^{2}-2x+1=0 כאשר ± הוא סימן חיבור וכאשר ± הוא סימן חיסור.
x=-1 x=5 x=\frac{-\sqrt{2}i+1}{3} x=\frac{1+\sqrt{2}i}{3}
פרט את כל הפתרונות שנמצאו.
±\frac{5}{3},±5,±\frac{1}{3},±1
לפי משפט השורש הרציונלי, כל השורשים הרציונליים של פולינום הם בצורה \frac{p}{q}, כאשר p מחלק את האיבר הקבוע -5 ו- q מחלק את המקדם המוביל 3. פרט את כל המועמדים \frac{p}{q}.
x=-1
מצא שורש כזה בכך שתנסה את כל ערכי המספרים השלמים, החל מהערך הקטן ביותר לפי ערך מוחלט. אם לא נמצאו שורשי מספרים שלמים, נסה שברים.
3x^{3}-17x^{2}+11x-5=0
לפי משפט הגורמים , x-k הוא גורם של הפולינום עבור כל שורש k. חלק את 3x^{4}-14x^{3}-6x^{2}+6x-5 ב- x+1 כדי לקבל 3x^{3}-17x^{2}+11x-5. פתור את המשוואה כאשר התוצאה שווה ל 0.
±\frac{5}{3},±5,±\frac{1}{3},±1
לפי משפט השורש הרציונלי, כל השורשים הרציונליים של פולינום הם בצורה \frac{p}{q}, כאשר p מחלק את האיבר הקבוע -5 ו- q מחלק את המקדם המוביל 3. פרט את כל המועמדים \frac{p}{q}.
x=5
מצא שורש כזה בכך שתנסה את כל ערכי המספרים השלמים, החל מהערך הקטן ביותר לפי ערך מוחלט. אם לא נמצאו שורשי מספרים שלמים, נסה שברים.
3x^{2}-2x+1=0
לפי משפט הגורמים , x-k הוא גורם של הפולינום עבור כל שורש k. חלק את 3x^{3}-17x^{2}+11x-5 ב- x-5 כדי לקבל 3x^{2}-2x+1. פתור את המשוואה כאשר התוצאה שווה ל 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\times 1}}{2\times 3}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. החלף את 3 ב- a, את -2 ב- b ואת 1 ב- c בנוסחה הריבועית.
x=\frac{2±\sqrt{-8}}{6}
בצע את החישובים.
x\in \emptyset
מאחר שהשורש הריבועי של מספר שלילי אינו מוגדר בשדה הממשי, לא קיימים פתרונות.
x=-1 x=5
פרט את כל הפתרונות שנמצאו.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}