פתור עבור x
x=-\frac{2}{3}\approx -0.666666667
x=4
גרף
שתף
הועתק ללוח
a+b=-10 ab=3\left(-8\right)=-24
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- 3x^{2}+ax+bx-8. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
1,-24 2,-12 3,-8 4,-6
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא שלילי, למספר השלילי יש ערך מוחלט גדול יותר מהחיובי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -24.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
חשב את הסכום של כל צמד.
a=-12 b=2
הפתרון הוא הצמד שנותן את הסכום -10.
\left(3x^{2}-12x\right)+\left(2x-8\right)
שכתב את 3x^{2}-10x-8 כ- \left(3x^{2}-12x\right)+\left(2x-8\right).
3x\left(x-4\right)+2\left(x-4\right)
הוצא את הגורם המשותף 3x בקבוצה הראשונה ואת 2 בקבוצה השניה.
\left(x-4\right)\left(3x+2\right)
הוצא את האיבר המשותף x-4 באמצעות חוק הפילוג.
x=4 x=-\frac{2}{3}
כדי למצוא פתרונות משוואה, פתור את x-4=0 ו- 3x+2=0.
3x^{2}-10x-8=0
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\left(-8\right)}}{2\times 3}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 3 במקום a, ב- -10 במקום b, וב- -8 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 3\left(-8\right)}}{2\times 3}
-10 בריבוע.
x=\frac{-\left(-10\right)±\sqrt{100-12\left(-8\right)}}{2\times 3}
הכפל את -4 ב- 3.
x=\frac{-\left(-10\right)±\sqrt{100+96}}{2\times 3}
הכפל את -12 ב- -8.
x=\frac{-\left(-10\right)±\sqrt{196}}{2\times 3}
הוסף את 100 ל- 96.
x=\frac{-\left(-10\right)±14}{2\times 3}
הוצא את השורש הריבועי של 196.
x=\frac{10±14}{2\times 3}
ההופכי של -10 הוא 10.
x=\frac{10±14}{6}
הכפל את 2 ב- 3.
x=\frac{24}{6}
כעת פתור את המשוואה x=\frac{10±14}{6} כאשר ± כולל סימן חיבור. הוסף את 10 ל- 14.
x=4
חלק את 24 ב- 6.
x=-\frac{4}{6}
כעת פתור את המשוואה x=\frac{10±14}{6} כאשר ± כולל סימן חיסור. החסר 14 מ- 10.
x=-\frac{2}{3}
צמצם את השבר \frac{-4}{6} לאיברים נמוכים יותר על-ידי ביטול 2.
x=4 x=-\frac{2}{3}
המשוואה נפתרה כעת.
3x^{2}-10x-8=0
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
3x^{2}-10x-8-\left(-8\right)=-\left(-8\right)
הוסף 8 לשני אגפי המשוואה.
3x^{2}-10x=-\left(-8\right)
החסרת -8 מעצמו נותנת 0.
3x^{2}-10x=8
החסר -8 מ- 0.
\frac{3x^{2}-10x}{3}=\frac{8}{3}
חלק את שני האגפים ב- 3.
x^{2}-\frac{10}{3}x=\frac{8}{3}
חילוק ב- 3 מבטל את ההכפלה ב- 3.
x^{2}-\frac{10}{3}x+\left(-\frac{5}{3}\right)^{2}=\frac{8}{3}+\left(-\frac{5}{3}\right)^{2}
חלק את -\frac{10}{3}, המקדם של האיבר x, ב- 2 כדי לקבל -\frac{5}{3}. לאחר מכן הוסף את הריבוע של -\frac{5}{3} לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{8}{3}+\frac{25}{9}
העלה את -\frac{5}{3} בריבוע על-ידי העלאת המונה והמכנה של השבר בריבוע.
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{49}{9}
הוסף את \frac{8}{3} ל- \frac{25}{9} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
\left(x-\frac{5}{3}\right)^{2}=\frac{49}{9}
פרק x^{2}-\frac{10}{3}x+\frac{25}{9} לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{3}\right)^{2}}=\sqrt{\frac{49}{9}}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x-\frac{5}{3}=\frac{7}{3} x-\frac{5}{3}=-\frac{7}{3}
פשט.
x=4 x=-\frac{2}{3}
הוסף \frac{5}{3} לשני אגפי המשוואה.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}