דילוג לתוכן העיקרי
פרק לגורמים
Tick mark Image
הערך
Tick mark Image

בעיות דומות מחיפוש באינטרנט

שתף

factor(9+5v^{2}+30v)
חבר את ‎3 ו- ‎6 כדי לקבל ‎9.
5v^{2}+30v+9=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎, כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
v=\frac{-30±\sqrt{30^{2}-4\times 5\times 9}}{2\times 5}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
v=\frac{-30±\sqrt{900-4\times 5\times 9}}{2\times 5}
‎30 בריבוע.
v=\frac{-30±\sqrt{900-20\times 9}}{2\times 5}
הכפל את ‎-4 ב- ‎5.
v=\frac{-30±\sqrt{900-180}}{2\times 5}
הכפל את ‎-20 ב- ‎9.
v=\frac{-30±\sqrt{720}}{2\times 5}
הוסף את ‎900 ל- ‎-180.
v=\frac{-30±12\sqrt{5}}{2\times 5}
הוצא את השורש הריבועי של 720.
v=\frac{-30±12\sqrt{5}}{10}
הכפל את ‎2 ב- ‎5.
v=\frac{12\sqrt{5}-30}{10}
כעת פתור את המשוואה v=\frac{-30±12\sqrt{5}}{10} כאשר ± כולל סימן חיבור. הוסף את ‎-30 ל- ‎12\sqrt{5}.
v=\frac{6\sqrt{5}}{5}-3
חלק את ‎-30+12\sqrt{5} ב- ‎10.
v=\frac{-12\sqrt{5}-30}{10}
כעת פתור את המשוואה v=\frac{-30±12\sqrt{5}}{10} כאשר ± כולל סימן חיסור. החסר ‎12\sqrt{5} מ- ‎-30.
v=-\frac{6\sqrt{5}}{5}-3
חלק את ‎-30-12\sqrt{5} ב- ‎10.
5v^{2}+30v+9=5\left(v-\left(\frac{6\sqrt{5}}{5}-3\right)\right)\left(v-\left(-\frac{6\sqrt{5}}{5}-3\right)\right)
פרק את הביטוי המקורי לגורמים באמצעות ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎. השתמש ב- ‎-3+\frac{6\sqrt{5}}{5} במקום x_{1} וב- ‎-3-\frac{6\sqrt{5}}{5} במקום x_{2}.
9+5v^{2}+30v
חבר את ‎3 ו- ‎6 כדי לקבל ‎9.