פרק לגורמים
25\left(a-\frac{52-2\sqrt{1391}}{5}\right)\left(a-\frac{2\sqrt{1391}+52}{5}\right)
הערך
25a^{2}-520a-2860
שתף
הועתק ללוח
25a^{2}-520a-2860=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
a=\frac{-\left(-520\right)±\sqrt{\left(-520\right)^{2}-4\times 25\left(-2860\right)}}{2\times 25}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
a=\frac{-\left(-520\right)±\sqrt{270400-4\times 25\left(-2860\right)}}{2\times 25}
-520 בריבוע.
a=\frac{-\left(-520\right)±\sqrt{270400-100\left(-2860\right)}}{2\times 25}
הכפל את -4 ב- 25.
a=\frac{-\left(-520\right)±\sqrt{270400+286000}}{2\times 25}
הכפל את -100 ב- -2860.
a=\frac{-\left(-520\right)±\sqrt{556400}}{2\times 25}
הוסף את 270400 ל- 286000.
a=\frac{-\left(-520\right)±20\sqrt{1391}}{2\times 25}
הוצא את השורש הריבועי של 556400.
a=\frac{520±20\sqrt{1391}}{2\times 25}
ההופכי של -520 הוא 520.
a=\frac{520±20\sqrt{1391}}{50}
הכפל את 2 ב- 25.
a=\frac{20\sqrt{1391}+520}{50}
כעת פתור את המשוואה a=\frac{520±20\sqrt{1391}}{50} כאשר ± כולל סימן חיבור. הוסף את 520 ל- 20\sqrt{1391}.
a=\frac{2\sqrt{1391}+52}{5}
חלק את 520+20\sqrt{1391} ב- 50.
a=\frac{520-20\sqrt{1391}}{50}
כעת פתור את המשוואה a=\frac{520±20\sqrt{1391}}{50} כאשר ± כולל סימן חיסור. החסר 20\sqrt{1391} מ- 520.
a=\frac{52-2\sqrt{1391}}{5}
חלק את 520-20\sqrt{1391} ב- 50.
25a^{2}-520a-2860=25\left(a-\frac{2\sqrt{1391}+52}{5}\right)\left(a-\frac{52-2\sqrt{1391}}{5}\right)
פרק את הביטוי המקורי לגורמים באמצעות ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). השתמש ב- \frac{52+2\sqrt{1391}}{5} במקום x_{1} וב- \frac{52-2\sqrt{1391}}{5} במקום x_{2}.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}