דילוג לתוכן העיקרי
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

2x^{2}+11x+9-10x=10
החסר ‎10x משני האגפים.
2x^{2}+x+9=10
כנס את ‎11x ו- ‎-10x כדי לקבל ‎x.
2x^{2}+x+9-10=0
החסר ‎10 משני האגפים.
2x^{2}+x-1=0
החסר את 10 מ- 9 כדי לקבל -1.
a+b=1 ab=2\left(-1\right)=-2
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- 2x^{2}+ax+bx-1. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
a=-1 b=2
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. הצמד היחיד מסוג זה הוא פתרון המערכת.
\left(2x^{2}-x\right)+\left(2x-1\right)
שכתב את ‎2x^{2}+x-1 כ- ‎\left(2x^{2}-x\right)+\left(2x-1\right).
x\left(2x-1\right)+2x-1
הוצא את הגורם המשותף x ב- 2x^{2}-x.
\left(2x-1\right)\left(x+1\right)
הוצא את האיבר המשותף 2x-1 באמצעות חוק הפילוג.
x=\frac{1}{2} x=-1
כדי למצוא פתרונות משוואה, פתור את 2x-1=0 ו- x+1=0.
2x^{2}+11x+9-10x=10
החסר ‎10x משני האגפים.
2x^{2}+x+9=10
כנס את ‎11x ו- ‎-10x כדי לקבל ‎x.
2x^{2}+x+9-10=0
החסר ‎10 משני האגפים.
2x^{2}+x-1=0
החסר את 10 מ- 9 כדי לקבל -1.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-1\right)}}{2\times 2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 2 במקום a, ב- 1 במקום b, וב- -1 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 2\left(-1\right)}}{2\times 2}
‎1 בריבוע.
x=\frac{-1±\sqrt{1-8\left(-1\right)}}{2\times 2}
הכפל את ‎-4 ב- ‎2.
x=\frac{-1±\sqrt{1+8}}{2\times 2}
הכפל את ‎-8 ב- ‎-1.
x=\frac{-1±\sqrt{9}}{2\times 2}
הוסף את ‎1 ל- ‎8.
x=\frac{-1±3}{2\times 2}
הוצא את השורש הריבועי של 9.
x=\frac{-1±3}{4}
הכפל את ‎2 ב- ‎2.
x=\frac{2}{4}
כעת פתור את המשוואה x=\frac{-1±3}{4} כאשר ± כולל סימן חיבור. הוסף את ‎-1 ל- ‎3.
x=\frac{1}{2}
צמצם את השבר ‎\frac{2}{4} לאיברים נמוכים יותר על-ידי ביטול 2.
x=-\frac{4}{4}
כעת פתור את המשוואה x=\frac{-1±3}{4} כאשר ± כולל סימן חיסור. החסר ‎3 מ- ‎-1.
x=-1
חלק את ‎-4 ב- ‎4.
x=\frac{1}{2} x=-1
המשוואה נפתרה כעת.
2x^{2}+11x+9-10x=10
החסר ‎10x משני האגפים.
2x^{2}+x+9=10
כנס את ‎11x ו- ‎-10x כדי לקבל ‎x.
2x^{2}+x=10-9
החסר ‎9 משני האגפים.
2x^{2}+x=1
החסר את 9 מ- 10 כדי לקבל 1.
\frac{2x^{2}+x}{2}=\frac{1}{2}
חלק את שני האגפים ב- ‎2.
x^{2}+\frac{1}{2}x=\frac{1}{2}
חילוק ב- ‎2 מבטל את ההכפלה ב- ‎2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
חלק את ‎\frac{1}{2}, המקדם של האיבר x, ב- 2 כדי לקבל ‎\frac{1}{4}. לאחר מכן הוסף את הריבוע של \frac{1}{4} לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
העלה את ‎\frac{1}{4} בריבוע על-ידי העלאת המונה והמכנה של השבר בריבוע.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
הוסף את ‎\frac{1}{2} ל- ‎\frac{1}{16} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
\left(x+\frac{1}{4}\right)^{2}=\frac{9}{16}
פרק x^{2}+\frac{1}{2}x+\frac{1}{16} לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x+\frac{1}{4}=\frac{3}{4} x+\frac{1}{4}=-\frac{3}{4}
פשט.
x=\frac{1}{2} x=-1
החסר ‎\frac{1}{4} משני אגפי המשוואה.