פתור עבור x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
x=-1
גרף
שתף
הועתק ללוח
a+b=5 ab=2\times 3=6
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- 2x^{2}+ax+bx+3. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
1,6 2,3
מאחר ש- ab הוא חיובי, ל- a ול- b יש אותו סימן. מאחר ש- a+b הוא חיובי, a ו- b שניהם חיוביים. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה 6.
1+6=7 2+3=5
חשב את הסכום של כל צמד.
a=2 b=3
הפתרון הוא הצמד שנותן את הסכום 5.
\left(2x^{2}+2x\right)+\left(3x+3\right)
שכתב את 2x^{2}+5x+3 כ- \left(2x^{2}+2x\right)+\left(3x+3\right).
2x\left(x+1\right)+3\left(x+1\right)
הוצא את הגורם המשותף 2x בקבוצה הראשונה ואת 3 בקבוצה השניה.
\left(x+1\right)\left(2x+3\right)
הוצא את האיבר המשותף x+1 באמצעות חוק הפילוג.
x=-1 x=-\frac{3}{2}
כדי למצוא פתרונות משוואה, פתור את x+1=0 ו- 2x+3=0.
2x^{2}+5x+3=0
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-5±\sqrt{5^{2}-4\times 2\times 3}}{2\times 2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 2 במקום a, ב- 5 במקום b, וב- 3 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 2\times 3}}{2\times 2}
5 בריבוע.
x=\frac{-5±\sqrt{25-8\times 3}}{2\times 2}
הכפל את -4 ב- 2.
x=\frac{-5±\sqrt{25-24}}{2\times 2}
הכפל את -8 ב- 3.
x=\frac{-5±\sqrt{1}}{2\times 2}
הוסף את 25 ל- -24.
x=\frac{-5±1}{2\times 2}
הוצא את השורש הריבועי של 1.
x=\frac{-5±1}{4}
הכפל את 2 ב- 2.
x=-\frac{4}{4}
כעת פתור את המשוואה x=\frac{-5±1}{4} כאשר ± כולל סימן חיבור. הוסף את -5 ל- 1.
x=-1
חלק את -4 ב- 4.
x=-\frac{6}{4}
כעת פתור את המשוואה x=\frac{-5±1}{4} כאשר ± כולל סימן חיסור. החסר 1 מ- -5.
x=-\frac{3}{2}
צמצם את השבר \frac{-6}{4} לאיברים נמוכים יותר על-ידי ביטול 2.
x=-1 x=-\frac{3}{2}
המשוואה נפתרה כעת.
2x^{2}+5x+3=0
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
2x^{2}+5x+3-3=-3
החסר 3 משני אגפי המשוואה.
2x^{2}+5x=-3
החסרת 3 מעצמו נותנת 0.
\frac{2x^{2}+5x}{2}=-\frac{3}{2}
חלק את שני האגפים ב- 2.
x^{2}+\frac{5}{2}x=-\frac{3}{2}
חילוק ב- 2 מבטל את ההכפלה ב- 2.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=-\frac{3}{2}+\left(\frac{5}{4}\right)^{2}
חלק את \frac{5}{2}, המקדם של האיבר x, ב- 2 כדי לקבל \frac{5}{4}. לאחר מכן הוסף את הריבוע של \frac{5}{4} לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}+\frac{5}{2}x+\frac{25}{16}=-\frac{3}{2}+\frac{25}{16}
העלה את \frac{5}{4} בריבוע על-ידי העלאת המונה והמכנה של השבר בריבוע.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{1}{16}
הוסף את -\frac{3}{2} ל- \frac{25}{16} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
\left(x+\frac{5}{4}\right)^{2}=\frac{1}{16}
פרק x^{2}+\frac{5}{2}x+\frac{25}{16} לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x+\frac{5}{4}=\frac{1}{4} x+\frac{5}{4}=-\frac{1}{4}
פשט.
x=-1 x=-\frac{3}{2}
החסר \frac{5}{4} משני אגפי המשוואה.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}