דילוג לתוכן העיקרי
פרק לגורמים
Tick mark Image
הערך
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

16x^{2}+x-75=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎, כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\times 16\left(-75\right)}}{2\times 16}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-1±\sqrt{1-4\times 16\left(-75\right)}}{2\times 16}
‎1 בריבוע.
x=\frac{-1±\sqrt{1-64\left(-75\right)}}{2\times 16}
הכפל את ‎-4 ב- ‎16.
x=\frac{-1±\sqrt{1+4800}}{2\times 16}
הכפל את ‎-64 ב- ‎-75.
x=\frac{-1±\sqrt{4801}}{2\times 16}
הוסף את ‎1 ל- ‎4800.
x=\frac{-1±\sqrt{4801}}{32}
הכפל את ‎2 ב- ‎16.
x=\frac{\sqrt{4801}-1}{32}
כעת פתור את המשוואה x=\frac{-1±\sqrt{4801}}{32} כאשר ± כולל סימן חיבור. הוסף את ‎-1 ל- ‎\sqrt{4801}.
x=\frac{-\sqrt{4801}-1}{32}
כעת פתור את המשוואה x=\frac{-1±\sqrt{4801}}{32} כאשר ± כולל סימן חיסור. החסר ‎\sqrt{4801} מ- ‎-1.
16x^{2}+x-75=16\left(x-\frac{\sqrt{4801}-1}{32}\right)\left(x-\frac{-\sqrt{4801}-1}{32}\right)
פרק את הביטוי המקורי לגורמים באמצעות ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎. השתמש ב- ‎\frac{-1+\sqrt{4801}}{32} במקום x_{1} וב- ‎\frac{-1-\sqrt{4801}}{32} במקום x_{2}.