דילוג לתוכן העיקרי
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x\left(-3x+2\right)=0
הוצא את הגורם המשותף x.
x=0 x=\frac{2}{3}
כדי למצוא פתרונות משוואה, פתור את x=0 ו- -3x+2=0.
-3x^{2}+2x=0
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-2±\sqrt{2^{2}}}{2\left(-3\right)}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- -3 במקום a, ב- 2 במקום b, וב- 0 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±2}{2\left(-3\right)}
הוצא את השורש הריבועי של 2^{2}.
x=\frac{-2±2}{-6}
הכפל את ‎2 ב- ‎-3.
x=\frac{0}{-6}
כעת פתור את המשוואה x=\frac{-2±2}{-6} כאשר ± כולל סימן חיבור. הוסף את ‎-2 ל- ‎2.
x=0
חלק את ‎0 ב- ‎-6.
x=-\frac{4}{-6}
כעת פתור את המשוואה x=\frac{-2±2}{-6} כאשר ± כולל סימן חיסור. החסר ‎2 מ- ‎-2.
x=\frac{2}{3}
צמצם את השבר ‎\frac{-4}{-6} לאיברים נמוכים יותר על-ידי ביטול 2.
x=0 x=\frac{2}{3}
המשוואה נפתרה כעת.
-3x^{2}+2x=0
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
\frac{-3x^{2}+2x}{-3}=\frac{0}{-3}
חלק את שני האגפים ב- ‎-3.
x^{2}+\frac{2}{-3}x=\frac{0}{-3}
חילוק ב- ‎-3 מבטל את ההכפלה ב- ‎-3.
x^{2}-\frac{2}{3}x=\frac{0}{-3}
חלק את ‎2 ב- ‎-3.
x^{2}-\frac{2}{3}x=0
חלק את ‎0 ב- ‎-3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\left(-\frac{1}{3}\right)^{2}
חלק את ‎-\frac{2}{3}, המקדם של האיבר x, ב- 2 כדי לקבל ‎-\frac{1}{3}. לאחר מכן הוסף את הריבוע של -\frac{1}{3} לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{1}{9}
העלה את ‎-\frac{1}{3} בריבוע על-ידי העלאת המונה והמכנה של השבר בריבוע.
\left(x-\frac{1}{3}\right)^{2}=\frac{1}{9}
פרק x^{2}-\frac{2}{3}x+\frac{1}{9} לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x-\frac{1}{3}=\frac{1}{3} x-\frac{1}{3}=-\frac{1}{3}
פשט.
x=\frac{2}{3} x=0
הוסף ‎\frac{1}{3} לשני אגפי המשוואה.