פתור עבור x
x=\frac{1}{2}=0.5
x=-1
גרף
שתף
הועתק ללוח
a+b=-1 ab=-2=-2
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- -2x^{2}+ax+bx+1. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
a=1 b=-2
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא שלילי, למספר השלילי יש ערך מוחלט גדול יותר מהחיובי. הצמד היחיד מסוג זה הוא פתרון המערכת.
\left(-2x^{2}+x\right)+\left(-2x+1\right)
שכתב את -2x^{2}-x+1 כ- \left(-2x^{2}+x\right)+\left(-2x+1\right).
-x\left(2x-1\right)-\left(2x-1\right)
הוצא את הגורם המשותף -x בקבוצה הראשונה ואת -1 בקבוצה השניה.
\left(2x-1\right)\left(-x-1\right)
הוצא את האיבר המשותף 2x-1 באמצעות חוק הפילוג.
x=\frac{1}{2} x=-1
כדי למצוא פתרונות משוואה, פתור את 2x-1=0 ו- -x-1=0.
-2x^{2}-x+1=0
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-2\right)}}{2\left(-2\right)}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- -2 במקום a, ב- -1 במקום b, וב- 1 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2\left(-2\right)}
הכפל את -4 ב- -2.
x=\frac{-\left(-1\right)±\sqrt{9}}{2\left(-2\right)}
הוסף את 1 ל- 8.
x=\frac{-\left(-1\right)±3}{2\left(-2\right)}
הוצא את השורש הריבועי של 9.
x=\frac{1±3}{2\left(-2\right)}
ההופכי של -1 הוא 1.
x=\frac{1±3}{-4}
הכפל את 2 ב- -2.
x=\frac{4}{-4}
כעת פתור את המשוואה x=\frac{1±3}{-4} כאשר ± כולל סימן חיבור. הוסף את 1 ל- 3.
x=-1
חלק את 4 ב- -4.
x=-\frac{2}{-4}
כעת פתור את המשוואה x=\frac{1±3}{-4} כאשר ± כולל סימן חיסור. החסר 3 מ- 1.
x=\frac{1}{2}
צמצם את השבר \frac{-2}{-4} לאיברים נמוכים יותר על-ידי ביטול 2.
x=-1 x=\frac{1}{2}
המשוואה נפתרה כעת.
-2x^{2}-x+1=0
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
-2x^{2}-x+1-1=-1
החסר 1 משני אגפי המשוואה.
-2x^{2}-x=-1
החסרת 1 מעצמו נותנת 0.
\frac{-2x^{2}-x}{-2}=-\frac{1}{-2}
חלק את שני האגפים ב- -2.
x^{2}+\left(-\frac{1}{-2}\right)x=-\frac{1}{-2}
חילוק ב- -2 מבטל את ההכפלה ב- -2.
x^{2}+\frac{1}{2}x=-\frac{1}{-2}
חלק את -1 ב- -2.
x^{2}+\frac{1}{2}x=\frac{1}{2}
חלק את -1 ב- -2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
חלק את \frac{1}{2}, המקדם של האיבר x, ב- 2 כדי לקבל \frac{1}{4}. לאחר מכן הוסף את הריבוע של \frac{1}{4} לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
העלה את \frac{1}{4} בריבוע על-ידי העלאת המונה והמכנה של השבר בריבוע.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
הוסף את \frac{1}{2} ל- \frac{1}{16} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
\left(x+\frac{1}{4}\right)^{2}=\frac{9}{16}
פרק x^{2}+\frac{1}{2}x+\frac{1}{16} לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x+\frac{1}{4}=\frac{3}{4} x+\frac{1}{4}=-\frac{3}{4}
פשט.
x=\frac{1}{2} x=-1
החסר \frac{1}{4} משני אגפי המשוואה.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}