פרק לגורמים
a\left(4a-1\right)
הערך
a\left(4a-1\right)
שתף
הועתק ללוח
a\left(-1+4a\right)
הוצא את הגורם המשותף a.
4a^{2}-a=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
a=\frac{-\left(-1\right)±\sqrt{1}}{2\times 4}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
a=\frac{-\left(-1\right)±1}{2\times 4}
הוצא את השורש הריבועי של 1.
a=\frac{1±1}{2\times 4}
ההופכי של -1 הוא 1.
a=\frac{1±1}{8}
הכפל את 2 ב- 4.
a=\frac{2}{8}
כעת פתור את המשוואה a=\frac{1±1}{8} כאשר ± כולל סימן חיבור. הוסף את 1 ל- 1.
a=\frac{1}{4}
צמצם את השבר \frac{2}{8} לאיברים נמוכים יותר על-ידי ביטול 2.
a=\frac{0}{8}
כעת פתור את המשוואה a=\frac{1±1}{8} כאשר ± כולל סימן חיסור. החסר 1 מ- 1.
a=0
חלק את 0 ב- 8.
4a^{2}-a=4\left(a-\frac{1}{4}\right)a
פרק את הביטוי המקורי לגורמים באמצעות ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). השתמש ב- \frac{1}{4} במקום x_{1} וב- 0 במקום x_{2}.
4a^{2}-a=4\times \frac{4a-1}{4}a
החסר את a מ- \frac{1}{4} על-ידי מציאת מכנה משותף והחסרת המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
4a^{2}-a=\left(4a-1\right)a
בטל את הגורם המשותף הגדול ביותר 4 ב- 4 ו- 4.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}