פרק לגורמים
2\left(-a^{2}-2a-4\right)
הערך
-2a^{2}-4a-8
שתף
הועתק ללוח
2\left(-a^{2}-2a-4\right)
הוצא את הגורם המשותף 2. הפולינום -a^{2}-2a-4 אינו מפורק לגורמים מכיוון שאין לו שורשים רציונליים.
-2a^{2}-4a-8=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-2\right)\left(-8\right)}}{2\left(-2\right)}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
a=\frac{-\left(-4\right)±\sqrt{16-4\left(-2\right)\left(-8\right)}}{2\left(-2\right)}
-4 בריבוע.
a=\frac{-\left(-4\right)±\sqrt{16+8\left(-8\right)}}{2\left(-2\right)}
הכפל את -4 ב- -2.
a=\frac{-\left(-4\right)±\sqrt{16-64}}{2\left(-2\right)}
הכפל את 8 ב- -8.
a=\frac{-\left(-4\right)±\sqrt{-48}}{2\left(-2\right)}
הוסף את 16 ל- -64.
-2a^{2}-4a-8
מאחר שהשורש הריבועי של מספר שלילי אינו מוגדר בשדה הממשי, לא קיימים פתרונות. לא ניתן לפרק פולינום ריבועי לגורמים.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}