פתור עבור x
x=-4
x=4
גרף
שתף
הועתק ללוח
x^{2}-1=15
שקול את \left(x-1\right)\left(x+1\right). ניתן להמיר כפל להפרשי הריבועים באמצעות הכלל: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 בריבוע.
x^{2}=15+1
הוסף 1 משני הצדדים.
x^{2}=16
חבר את 15 ו- 1 כדי לקבל 16.
x=4 x=-4
הוצא את השורש הריבועי של שני אגפי המשוואה.
x^{2}-1=15
שקול את \left(x-1\right)\left(x+1\right). ניתן להמיר כפל להפרשי הריבועים באמצעות הכלל: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 בריבוע.
x^{2}-1-15=0
החסר 15 משני האגפים.
x^{2}-16=0
החסר את 15 מ- -1 כדי לקבל -16.
x=\frac{0±\sqrt{0^{2}-4\left(-16\right)}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- 0 במקום b, וב- -16 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-16\right)}}{2}
0 בריבוע.
x=\frac{0±\sqrt{64}}{2}
הכפל את -4 ב- -16.
x=\frac{0±8}{2}
הוצא את השורש הריבועי של 64.
x=4
כעת פתור את המשוואה x=\frac{0±8}{2} כאשר ± כולל סימן חיבור. חלק את 8 ב- 2.
x=-4
כעת פתור את המשוואה x=\frac{0±8}{2} כאשר ± כולל סימן חיסור. חלק את -8 ב- 2.
x=4 x=-4
המשוואה נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}