הערך
y^{2}-3
גזור ביחס ל- y
2y
גרף
שתף
הועתק ללוח
y^{2}-\left(\sqrt{3}\right)^{2}
ניתן להמיר כפל להפרשי הריבועים באמצעות הכלל: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
y^{2}-3
הריבוע של \sqrt{3} הוא 3.
\frac{\mathrm{d}}{\mathrm{d}y}(y^{2}-\left(\sqrt{3}\right)^{2})
שקול את \left(y-\sqrt{3}\right)\left(y+\sqrt{3}\right). ניתן להמיר כפל להפרשי הריבועים באמצעות הכלל: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}y}(y^{2}-3)
הריבוע של \sqrt{3} הוא 3.
2y^{2-1}
הנגזרת של פולינום היא סכום הנגזרות של האיברים שלו. הנגזרת של איבר קבוע היא 0. הנגזרת של ax^{n} היא nax^{n-1}.
2y^{1}
החסר 1 מ- 2.
2y
עבור כל איבר t, t^{1}=t.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}