דילוג לתוכן העיקרי
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x^{2}-10x+25=1
השתמש בבינום של ניוטון \left(a-b\right)^{2}=a^{2}-2ab+b^{2} כדי להרחיב את ‎\left(x-5\right)^{2}.
x^{2}-10x+25-1=0
החסר ‎1 משני האגפים.
x^{2}-10x+24=0
החסר את 1 מ- 25 כדי לקבל 24.
a+b=-10 ab=24
כדי לפתור את המשוואה, פרק את x^{2}-10x+24 לגורמים באמצעות הנוסחה x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,-24 -2,-12 -3,-8 -4,-6
מאחר ש- ab הוא חיובי, ל- a ול- b יש אותו סימן. מאחר ש- a+b הוא שלילי, a ו- b שניהם שליליים. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
חשב את הסכום של כל צמד.
a=-6 b=-4
הפתרון הוא הצמד שנותן את הסכום -10.
\left(x-6\right)\left(x-4\right)
שכתב את הביטוי המפורק לגורמים \left(x+a\right)\left(x+b\right) באמצעות הערכים שהתקבלו.
x=6 x=4
כדי למצוא פתרונות משוואה, פתור את x-6=0 ו- x-4=0.
x^{2}-10x+25=1
השתמש בבינום של ניוטון \left(a-b\right)^{2}=a^{2}-2ab+b^{2} כדי להרחיב את ‎\left(x-5\right)^{2}.
x^{2}-10x+25-1=0
החסר ‎1 משני האגפים.
x^{2}-10x+24=0
החסר את 1 מ- 25 כדי לקבל 24.
a+b=-10 ab=1\times 24=24
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- x^{2}+ax+bx+24. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,-24 -2,-12 -3,-8 -4,-6
מאחר ש- ab הוא חיובי, ל- a ול- b יש אותו סימן. מאחר ש- a+b הוא שלילי, a ו- b שניהם שליליים. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
חשב את הסכום של כל צמד.
a=-6 b=-4
הפתרון הוא הצמד שנותן את הסכום -10.
\left(x^{2}-6x\right)+\left(-4x+24\right)
שכתב את ‎x^{2}-10x+24 כ- ‎\left(x^{2}-6x\right)+\left(-4x+24\right).
x\left(x-6\right)-4\left(x-6\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת -4 בקבוצה השניה.
\left(x-6\right)\left(x-4\right)
הוצא את האיבר המשותף x-6 באמצעות חוק הפילוג.
x=6 x=4
כדי למצוא פתרונות משוואה, פתור את x-6=0 ו- x-4=0.
x^{2}-10x+25=1
השתמש בבינום של ניוטון \left(a-b\right)^{2}=a^{2}-2ab+b^{2} כדי להרחיב את ‎\left(x-5\right)^{2}.
x^{2}-10x+25-1=0
החסר ‎1 משני האגפים.
x^{2}-10x+24=0
החסר את 1 מ- 25 כדי לקבל 24.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 24}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- -10 במקום b, וב- 24 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 24}}{2}
‎-10 בריבוע.
x=\frac{-\left(-10\right)±\sqrt{100-96}}{2}
הכפל את ‎-4 ב- ‎24.
x=\frac{-\left(-10\right)±\sqrt{4}}{2}
הוסף את ‎100 ל- ‎-96.
x=\frac{-\left(-10\right)±2}{2}
הוצא את השורש הריבועי של 4.
x=\frac{10±2}{2}
ההופכי של ‎-10 הוא ‎10.
x=\frac{12}{2}
כעת פתור את המשוואה x=\frac{10±2}{2} כאשר ± כולל סימן חיבור. הוסף את ‎10 ל- ‎2.
x=6
חלק את ‎12 ב- ‎2.
x=\frac{8}{2}
כעת פתור את המשוואה x=\frac{10±2}{2} כאשר ± כולל סימן חיסור. החסר ‎2 מ- ‎10.
x=4
חלק את ‎8 ב- ‎2.
x=6 x=4
המשוואה נפתרה כעת.
\sqrt{\left(x-5\right)^{2}}=\sqrt{1}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x-5=1 x-5=-1
פשט.
x=6 x=4
הוסף ‎5 לשני אגפי המשוואה.