פתור עבור x
x=1
x=-7
גרף
שתף
הועתק ללוח
x^{2}+6x+9=16
השתמש בבינום של ניוטון \left(a+b\right)^{2}=a^{2}+2ab+b^{2} כדי להרחיב את \left(x+3\right)^{2}.
x^{2}+6x+9-16=0
החסר 16 משני האגפים.
x^{2}+6x-7=0
החסר את 16 מ- 9 כדי לקבל -7.
a+b=6 ab=-7
כדי לפתור את המשוואה, פרק את x^{2}+6x-7 לגורמים באמצעות הנוסחה x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). כדי למצוא את a ו- b, הגדר מערכת לפתרון.
a=-1 b=7
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. הצמד היחיד מסוג זה הוא פתרון המערכת.
\left(x-1\right)\left(x+7\right)
שכתב את הביטוי המפורק לגורמים \left(x+a\right)\left(x+b\right) באמצעות הערכים שהתקבלו.
x=1 x=-7
כדי למצוא פתרונות משוואה, פתור את x-1=0 ו- x+7=0.
x^{2}+6x+9=16
השתמש בבינום של ניוטון \left(a+b\right)^{2}=a^{2}+2ab+b^{2} כדי להרחיב את \left(x+3\right)^{2}.
x^{2}+6x+9-16=0
החסר 16 משני האגפים.
x^{2}+6x-7=0
החסר את 16 מ- 9 כדי לקבל -7.
a+b=6 ab=1\left(-7\right)=-7
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- x^{2}+ax+bx-7. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
a=-1 b=7
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. הצמד היחיד מסוג זה הוא פתרון המערכת.
\left(x^{2}-x\right)+\left(7x-7\right)
שכתב את x^{2}+6x-7 כ- \left(x^{2}-x\right)+\left(7x-7\right).
x\left(x-1\right)+7\left(x-1\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת 7 בקבוצה השניה.
\left(x-1\right)\left(x+7\right)
הוצא את האיבר המשותף x-1 באמצעות חוק הפילוג.
x=1 x=-7
כדי למצוא פתרונות משוואה, פתור את x-1=0 ו- x+7=0.
x^{2}+6x+9=16
השתמש בבינום של ניוטון \left(a+b\right)^{2}=a^{2}+2ab+b^{2} כדי להרחיב את \left(x+3\right)^{2}.
x^{2}+6x+9-16=0
החסר 16 משני האגפים.
x^{2}+6x-7=0
החסר את 16 מ- 9 כדי לקבל -7.
x=\frac{-6±\sqrt{6^{2}-4\left(-7\right)}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- 6 במקום b, וב- -7 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-7\right)}}{2}
6 בריבוע.
x=\frac{-6±\sqrt{36+28}}{2}
הכפל את -4 ב- -7.
x=\frac{-6±\sqrt{64}}{2}
הוסף את 36 ל- 28.
x=\frac{-6±8}{2}
הוצא את השורש הריבועי של 64.
x=\frac{2}{2}
כעת פתור את המשוואה x=\frac{-6±8}{2} כאשר ± כולל סימן חיבור. הוסף את -6 ל- 8.
x=1
חלק את 2 ב- 2.
x=-\frac{14}{2}
כעת פתור את המשוואה x=\frac{-6±8}{2} כאשר ± כולל סימן חיסור. החסר 8 מ- -6.
x=-7
חלק את -14 ב- 2.
x=1 x=-7
המשוואה נפתרה כעת.
\sqrt{\left(x+3\right)^{2}}=\sqrt{16}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x+3=4 x+3=-4
פשט.
x=1 x=-7
החסר 3 משני אגפי המשוואה.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}