פתור עבור x
x=-1
x=4
גרף
שתף
הועתק ללוח
2x^{2}-12x+16=\left(5-x\right)\left(4-x\right)
השתמש בחוק הפילוג כדי להכפיל את 2x-4 ב- x-4 ולכנס איברים דומים.
2x^{2}-12x+16=20-9x+x^{2}
השתמש בחוק הפילוג כדי להכפיל את 5-x ב- 4-x ולכנס איברים דומים.
2x^{2}-12x+16-20=-9x+x^{2}
החסר 20 משני האגפים.
2x^{2}-12x-4=-9x+x^{2}
החסר את 20 מ- 16 כדי לקבל -4.
2x^{2}-12x-4+9x=x^{2}
הוסף 9x משני הצדדים.
2x^{2}-3x-4=x^{2}
כנס את -12x ו- 9x כדי לקבל -3x.
2x^{2}-3x-4-x^{2}=0
החסר x^{2} משני האגפים.
x^{2}-3x-4=0
כנס את 2x^{2} ו- -x^{2} כדי לקבל x^{2}.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- -3 במקום b, וב- -4 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)}}{2}
-3 בריבוע.
x=\frac{-\left(-3\right)±\sqrt{9+16}}{2}
הכפל את -4 ב- -4.
x=\frac{-\left(-3\right)±\sqrt{25}}{2}
הוסף את 9 ל- 16.
x=\frac{-\left(-3\right)±5}{2}
הוצא את השורש הריבועי של 25.
x=\frac{3±5}{2}
ההופכי של -3 הוא 3.
x=\frac{8}{2}
כעת פתור את המשוואה x=\frac{3±5}{2} כאשר ± כולל סימן חיבור. הוסף את 3 ל- 5.
x=4
חלק את 8 ב- 2.
x=-\frac{2}{2}
כעת פתור את המשוואה x=\frac{3±5}{2} כאשר ± כולל סימן חיסור. החסר 5 מ- 3.
x=-1
חלק את -2 ב- 2.
x=4 x=-1
המשוואה נפתרה כעת.
2x^{2}-12x+16=\left(5-x\right)\left(4-x\right)
השתמש בחוק הפילוג כדי להכפיל את 2x-4 ב- x-4 ולכנס איברים דומים.
2x^{2}-12x+16=20-9x+x^{2}
השתמש בחוק הפילוג כדי להכפיל את 5-x ב- 4-x ולכנס איברים דומים.
2x^{2}-12x+16+9x=20+x^{2}
הוסף 9x משני הצדדים.
2x^{2}-3x+16=20+x^{2}
כנס את -12x ו- 9x כדי לקבל -3x.
2x^{2}-3x+16-x^{2}=20
החסר x^{2} משני האגפים.
x^{2}-3x+16=20
כנס את 2x^{2} ו- -x^{2} כדי לקבל x^{2}.
x^{2}-3x=20-16
החסר 16 משני האגפים.
x^{2}-3x=4
החסר את 16 מ- 20 כדי לקבל 4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
חלק את -3, המקדם של האיבר x, ב- 2 כדי לקבל -\frac{3}{2}. לאחר מכן הוסף את הריבוע של -\frac{3}{2} לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
העלה את -\frac{3}{2} בריבוע על-ידי העלאת המונה והמכנה של השבר בריבוע.
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
הוסף את 4 ל- \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
פרק x^{2}-3x+\frac{9}{4} לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
פשט.
x=4 x=-1
הוסף \frac{3}{2} לשני אגפי המשוואה.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}