פתור עבור x
x=-7
x=4
גרף
שתף
הועתק ללוח
2x^{3}-32x+3x^{2}-48+\left(x-4\right)\left(x+40\right)=2\left(x-4\right)\left(x^{2}-16\right)
השתמש בחוק הפילוג כדי להכפיל את 2x+3 ב- x^{2}-16.
2x^{3}-32x+3x^{2}-48+x^{2}+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
השתמש בחוק הפילוג כדי להכפיל את x-4 ב- x+40 ולכנס איברים דומים.
2x^{3}-32x+4x^{2}-48+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
כנס את 3x^{2} ו- x^{2} כדי לקבל 4x^{2}.
2x^{3}+4x+4x^{2}-48-160=2\left(x-4\right)\left(x^{2}-16\right)
כנס את -32x ו- 36x כדי לקבל 4x.
2x^{3}+4x+4x^{2}-208=2\left(x-4\right)\left(x^{2}-16\right)
החסר את 160 מ- -48 כדי לקבל -208.
2x^{3}+4x+4x^{2}-208=\left(2x-8\right)\left(x^{2}-16\right)
השתמש בחוק הפילוג כדי להכפיל את 2 ב- x-4.
2x^{3}+4x+4x^{2}-208=2x^{3}-32x-8x^{2}+128
השתמש בחוק הפילוג כדי להכפיל את 2x-8 ב- x^{2}-16.
2x^{3}+4x+4x^{2}-208-2x^{3}=-32x-8x^{2}+128
החסר 2x^{3} משני האגפים.
4x+4x^{2}-208=-32x-8x^{2}+128
כנס את 2x^{3} ו- -2x^{3} כדי לקבל 0.
4x+4x^{2}-208+32x=-8x^{2}+128
הוסף 32x משני הצדדים.
36x+4x^{2}-208=-8x^{2}+128
כנס את 4x ו- 32x כדי לקבל 36x.
36x+4x^{2}-208+8x^{2}=128
הוסף 8x^{2} משני הצדדים.
36x+12x^{2}-208=128
כנס את 4x^{2} ו- 8x^{2} כדי לקבל 12x^{2}.
36x+12x^{2}-208-128=0
החסר 128 משני האגפים.
36x+12x^{2}-336=0
החסר את 128 מ- -208 כדי לקבל -336.
3x+x^{2}-28=0
חלק את שני האגפים ב- 12.
x^{2}+3x-28=0
סדר מחדש את הפולינום כדי להעביר אותה לצורה סטנדרטית. מקם את האיברים לפי הסדר מהחזקה הגבוהה ביותר לנמוכה ביותר.
a+b=3 ab=1\left(-28\right)=-28
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- x^{2}+ax+bx-28. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,28 -2,14 -4,7
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -28.
-1+28=27 -2+14=12 -4+7=3
חשב את הסכום של כל צמד.
a=-4 b=7
הפתרון הוא הצמד שנותן את הסכום 3.
\left(x^{2}-4x\right)+\left(7x-28\right)
שכתב את x^{2}+3x-28 כ- \left(x^{2}-4x\right)+\left(7x-28\right).
x\left(x-4\right)+7\left(x-4\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת 7 בקבוצה השניה.
\left(x-4\right)\left(x+7\right)
הוצא את האיבר המשותף x-4 באמצעות חוק הפילוג.
x=4 x=-7
כדי למצוא פתרונות משוואה, פתור את x-4=0 ו- x+7=0.
2x^{3}-32x+3x^{2}-48+\left(x-4\right)\left(x+40\right)=2\left(x-4\right)\left(x^{2}-16\right)
השתמש בחוק הפילוג כדי להכפיל את 2x+3 ב- x^{2}-16.
2x^{3}-32x+3x^{2}-48+x^{2}+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
השתמש בחוק הפילוג כדי להכפיל את x-4 ב- x+40 ולכנס איברים דומים.
2x^{3}-32x+4x^{2}-48+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
כנס את 3x^{2} ו- x^{2} כדי לקבל 4x^{2}.
2x^{3}+4x+4x^{2}-48-160=2\left(x-4\right)\left(x^{2}-16\right)
כנס את -32x ו- 36x כדי לקבל 4x.
2x^{3}+4x+4x^{2}-208=2\left(x-4\right)\left(x^{2}-16\right)
החסר את 160 מ- -48 כדי לקבל -208.
2x^{3}+4x+4x^{2}-208=\left(2x-8\right)\left(x^{2}-16\right)
השתמש בחוק הפילוג כדי להכפיל את 2 ב- x-4.
2x^{3}+4x+4x^{2}-208=2x^{3}-32x-8x^{2}+128
השתמש בחוק הפילוג כדי להכפיל את 2x-8 ב- x^{2}-16.
2x^{3}+4x+4x^{2}-208-2x^{3}=-32x-8x^{2}+128
החסר 2x^{3} משני האגפים.
4x+4x^{2}-208=-32x-8x^{2}+128
כנס את 2x^{3} ו- -2x^{3} כדי לקבל 0.
4x+4x^{2}-208+32x=-8x^{2}+128
הוסף 32x משני הצדדים.
36x+4x^{2}-208=-8x^{2}+128
כנס את 4x ו- 32x כדי לקבל 36x.
36x+4x^{2}-208+8x^{2}=128
הוסף 8x^{2} משני הצדדים.
36x+12x^{2}-208=128
כנס את 4x^{2} ו- 8x^{2} כדי לקבל 12x^{2}.
36x+12x^{2}-208-128=0
החסר 128 משני האגפים.
36x+12x^{2}-336=0
החסר את 128 מ- -208 כדי לקבל -336.
12x^{2}+36x-336=0
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-36±\sqrt{36^{2}-4\times 12\left(-336\right)}}{2\times 12}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 12 במקום a, ב- 36 במקום b, וב- -336 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-36±\sqrt{1296-4\times 12\left(-336\right)}}{2\times 12}
36 בריבוע.
x=\frac{-36±\sqrt{1296-48\left(-336\right)}}{2\times 12}
הכפל את -4 ב- 12.
x=\frac{-36±\sqrt{1296+16128}}{2\times 12}
הכפל את -48 ב- -336.
x=\frac{-36±\sqrt{17424}}{2\times 12}
הוסף את 1296 ל- 16128.
x=\frac{-36±132}{2\times 12}
הוצא את השורש הריבועי של 17424.
x=\frac{-36±132}{24}
הכפל את 2 ב- 12.
x=\frac{96}{24}
כעת פתור את המשוואה x=\frac{-36±132}{24} כאשר ± כולל סימן חיבור. הוסף את -36 ל- 132.
x=4
חלק את 96 ב- 24.
x=-\frac{168}{24}
כעת פתור את המשוואה x=\frac{-36±132}{24} כאשר ± כולל סימן חיסור. החסר 132 מ- -36.
x=-7
חלק את -168 ב- 24.
x=4 x=-7
המשוואה נפתרה כעת.
2x^{3}-32x+3x^{2}-48+\left(x-4\right)\left(x+40\right)=2\left(x-4\right)\left(x^{2}-16\right)
השתמש בחוק הפילוג כדי להכפיל את 2x+3 ב- x^{2}-16.
2x^{3}-32x+3x^{2}-48+x^{2}+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
השתמש בחוק הפילוג כדי להכפיל את x-4 ב- x+40 ולכנס איברים דומים.
2x^{3}-32x+4x^{2}-48+36x-160=2\left(x-4\right)\left(x^{2}-16\right)
כנס את 3x^{2} ו- x^{2} כדי לקבל 4x^{2}.
2x^{3}+4x+4x^{2}-48-160=2\left(x-4\right)\left(x^{2}-16\right)
כנס את -32x ו- 36x כדי לקבל 4x.
2x^{3}+4x+4x^{2}-208=2\left(x-4\right)\left(x^{2}-16\right)
החסר את 160 מ- -48 כדי לקבל -208.
2x^{3}+4x+4x^{2}-208=\left(2x-8\right)\left(x^{2}-16\right)
השתמש בחוק הפילוג כדי להכפיל את 2 ב- x-4.
2x^{3}+4x+4x^{2}-208=2x^{3}-32x-8x^{2}+128
השתמש בחוק הפילוג כדי להכפיל את 2x-8 ב- x^{2}-16.
2x^{3}+4x+4x^{2}-208-2x^{3}=-32x-8x^{2}+128
החסר 2x^{3} משני האגפים.
4x+4x^{2}-208=-32x-8x^{2}+128
כנס את 2x^{3} ו- -2x^{3} כדי לקבל 0.
4x+4x^{2}-208+32x=-8x^{2}+128
הוסף 32x משני הצדדים.
36x+4x^{2}-208=-8x^{2}+128
כנס את 4x ו- 32x כדי לקבל 36x.
36x+4x^{2}-208+8x^{2}=128
הוסף 8x^{2} משני הצדדים.
36x+12x^{2}-208=128
כנס את 4x^{2} ו- 8x^{2} כדי לקבל 12x^{2}.
36x+12x^{2}=128+208
הוסף 208 משני הצדדים.
36x+12x^{2}=336
חבר את 128 ו- 208 כדי לקבל 336.
12x^{2}+36x=336
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
\frac{12x^{2}+36x}{12}=\frac{336}{12}
חלק את שני האגפים ב- 12.
x^{2}+\frac{36}{12}x=\frac{336}{12}
חילוק ב- 12 מבטל את ההכפלה ב- 12.
x^{2}+3x=\frac{336}{12}
חלק את 36 ב- 12.
x^{2}+3x=28
חלק את 336 ב- 12.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=28+\left(\frac{3}{2}\right)^{2}
חלק את 3, המקדם של האיבר x, ב- 2 כדי לקבל \frac{3}{2}. לאחר מכן הוסף את הריבוע של \frac{3}{2} לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}+3x+\frac{9}{4}=28+\frac{9}{4}
העלה את \frac{3}{2} בריבוע על-ידי העלאת המונה והמכנה של השבר בריבוע.
x^{2}+3x+\frac{9}{4}=\frac{121}{4}
הוסף את 28 ל- \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{121}{4}
פרק x^{2}+3x+\frac{9}{4} לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x+\frac{3}{2}=\frac{11}{2} x+\frac{3}{2}=-\frac{11}{2}
פשט.
x=4 x=-7
החסר \frac{3}{2} משני אגפי המשוואה.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}