הערך
-\sqrt{3}-4\sqrt{2}\approx -7.388905057
שתף
הועתק ללוח
4\left(\sqrt{2}\right)^{2}-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
השתמש בבינום של ניוטון \left(a-b\right)^{2}=a^{2}-2ab+b^{2} כדי להרחיב את \left(2\sqrt{2}-1\right)^{2}.
4\times 2-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
הריבוע של \sqrt{2} הוא 2.
8-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
הכפל את 4 ו- 2 כדי לקבל 8.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
חבר את 8 ו- 1 כדי לקבל 9.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{2\sqrt{3}-3}{\sqrt{3}}
פרק את 12=2^{2}\times 3 לגורמים. שכתב את השורש הריבועי של \sqrt{2^{2}\times 3} המוצר בתור המכפלה של \sqrt{2^{2}}\sqrt{3} ריבועיים הריבועי. הוצא את השורש הריבועי של 2^{2}.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
הפוך את המכנה של \frac{2\sqrt{3}-3}{\sqrt{3}} לרציונלי על-ידי הכפלת המונה והמכנה ב- \sqrt{3}.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3}
הריבוע של \sqrt{3} הוא 3.
\frac{3\left(9-4\sqrt{2}\right)}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3}
כדי לחבר או להחסיר ביטויים, הרחב אותם כדי ליצור עבורם מכנה זהה. הכפל את 9-4\sqrt{2} ב- \frac{3}{3}.
\frac{3\left(9-4\sqrt{2}\right)+\left(2\sqrt{3}-3\right)\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
מכיוון ש- \frac{3\left(9-4\sqrt{2}\right)}{3} ו- \frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3} כוללים מכנה זהה, חבר אותם על-ידי חיבור המונים שלהם.
\frac{27-12\sqrt{2}+6-3\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
בצע את פעולות הכפל ב- 3\left(9-4\sqrt{2}\right)+\left(2\sqrt{3}-3\right)\sqrt{3}.
\frac{33-12\sqrt{2}-3\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
בצע את החישובים ב- 27-12\sqrt{2}+6-3\sqrt{3}.
11-4\sqrt{2}-\sqrt{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
חלק כל איבר של 33-12\sqrt{2}-3\sqrt{3} ב- 3 כדי לקבל 11-4\sqrt{2}-\sqrt{3}.
11-4\sqrt{2}-\sqrt{3}-4\left(\sqrt{3}\right)^{2}+1
השתמש בחוק הפילוג כדי להכפיל את 2\sqrt{3}-1 ב- -2\sqrt{3}-1 ולכנס איברים דומים.
11-4\sqrt{2}-\sqrt{3}-4\times 3+1
הריבוע של \sqrt{3} הוא 3.
11-4\sqrt{2}-\sqrt{3}-12+1
הכפל את -4 ו- 3 כדי לקבל -12.
11-4\sqrt{2}-\sqrt{3}-11
חבר את -12 ו- 1 כדי לקבל -11.
-4\sqrt{2}-\sqrt{3}
החסר את 11 מ- 11 כדי לקבל 0.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}