פתור עבור x
x=-1
x=1
פתור עבור x (complex solution)
x=i
x=-i
x=-1
x=1
גרף
שתף
הועתק ללוח
x^{6}+1-x^{4}=x^{2}
החסר x^{4} משני האגפים.
x^{6}+1-x^{4}-x^{2}=0
החסר x^{2} משני האגפים.
x^{6}-x^{4}-x^{2}+1=0
סדר מחדש את המשוואה כדי להעביר אותה לצורה סטנדרטית. מקם את האיברים לפי הסדר מהחזקה הגבוהה ביותר לנמוכה ביותר.
±1
לפי משפט השורש הרציונלי, כל השורשים הרציונליים של פולינום הם בצורה \frac{p}{q}, כאשר p מחלק את האיבר הקבוע 1 ו- q מחלק את המקדם המוביל 1. פרט את כל המועמדים \frac{p}{q}.
x=1
מצא שורש כזה בכך שתנסה את כל ערכי המספרים השלמים, החל מהערך הקטן ביותר לפי ערך מוחלט. אם לא נמצאו שורשי מספרים שלמים, נסה שברים.
x^{5}+x^{4}-x-1=0
לפי משפט הגורמים , x-k הוא גורם של הפולינום עבור כל שורש k. חלק את x^{6}-x^{4}-x^{2}+1 ב- x-1 כדי לקבל x^{5}+x^{4}-x-1. פתור את המשוואה כאשר התוצאה שווה ל 0.
±1
לפי משפט השורש הרציונלי, כל השורשים הרציונליים של פולינום הם בצורה \frac{p}{q}, כאשר p מחלק את האיבר הקבוע -1 ו- q מחלק את המקדם המוביל 1. פרט את כל המועמדים \frac{p}{q}.
x=1
מצא שורש כזה בכך שתנסה את כל ערכי המספרים השלמים, החל מהערך הקטן ביותר לפי ערך מוחלט. אם לא נמצאו שורשי מספרים שלמים, נסה שברים.
x^{4}+2x^{3}+2x^{2}+2x+1=0
לפי משפט הגורמים , x-k הוא גורם של הפולינום עבור כל שורש k. חלק את x^{5}+x^{4}-x-1 ב- x-1 כדי לקבל x^{4}+2x^{3}+2x^{2}+2x+1. פתור את המשוואה כאשר התוצאה שווה ל 0.
±1
לפי משפט השורש הרציונלי, כל השורשים הרציונליים של פולינום הם בצורה \frac{p}{q}, כאשר p מחלק את האיבר הקבוע 1 ו- q מחלק את המקדם המוביל 1. פרט את כל המועמדים \frac{p}{q}.
x=-1
מצא שורש כזה בכך שתנסה את כל ערכי המספרים השלמים, החל מהערך הקטן ביותר לפי ערך מוחלט. אם לא נמצאו שורשי מספרים שלמים, נסה שברים.
x^{3}+x^{2}+x+1=0
לפי משפט הגורמים , x-k הוא גורם של הפולינום עבור כל שורש k. חלק את x^{4}+2x^{3}+2x^{2}+2x+1 ב- x+1 כדי לקבל x^{3}+x^{2}+x+1. פתור את המשוואה כאשר התוצאה שווה ל 0.
±1
לפי משפט השורש הרציונלי, כל השורשים הרציונליים של פולינום הם בצורה \frac{p}{q}, כאשר p מחלק את האיבר הקבוע 1 ו- q מחלק את המקדם המוביל 1. פרט את כל המועמדים \frac{p}{q}.
x=-1
מצא שורש כזה בכך שתנסה את כל ערכי המספרים השלמים, החל מהערך הקטן ביותר לפי ערך מוחלט. אם לא נמצאו שורשי מספרים שלמים, נסה שברים.
x^{2}+1=0
לפי משפט הגורמים , x-k הוא גורם של הפולינום עבור כל שורש k. חלק את x^{3}+x^{2}+x+1 ב- x+1 כדי לקבל x^{2}+1. פתור את המשוואה כאשר התוצאה שווה ל 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 1}}{2}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. החלף את 1 ב- a, את 0 ב- b ואת 1 ב- c בנוסחה הריבועית.
x=\frac{0±\sqrt{-4}}{2}
בצע את החישובים.
x\in \emptyset
מאחר שהשורש הריבועי של מספר שלילי אינו מוגדר בשדה הממשי, לא קיימים פתרונות.
x=1 x=-1
פרט את כל הפתרונות שנמצאו.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}