דילוג לתוכן העיקרי
פתור עבור x (complex solution)
Tick mark Image
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x^{3}-1=0
החסר ‎1 משני האגפים.
±1
לפי משפט השורש הרציונלי, כל השורשים הרציונליים של פולינום הם בצורה \frac{p}{q}, כאשר p מחלק את האיבר הקבוע -1 ו- q מחלק את המקדם המוביל 1. פרט את כל המועמדים \frac{p}{q}.
x=1
מצא שורש כזה בכך שתנסה את כל ערכי המספרים השלמים, החל מהערך הקטן ביותר לפי ערך מוחלט. אם לא נמצאו שורשי מספרים שלמים, נסה שברים.
x^{2}+x+1=0
לפי משפט הגורמים , x-k הוא גורם של הפולינום עבור כל שורש k. חלק את ‎x^{3}-1 ב- ‎x-1 כדי לקבל ‎x^{2}+x+1. פתור את המשוואה שבה התוצאה שווה ל-0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: ‎\frac{-b±\sqrt{b^{2}-4ac}}{2a}‎. החלף את ‎1 ב- a, את ‎1 ב- b ואת ‎1 ב- c בנוסחה הריבועית.
x=\frac{-1±\sqrt{-3}}{2}
בצע את החישובים.
x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
פתור את המשוואה ‎x^{2}+x+1=0 כאשר ± הוא סימן חיבור וכאשר ± הוא סימן חיסור.
x=1 x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
פרט את כל הפתרונות שנמצאו.
x^{3}-1=0
החסר ‎1 משני האגפים.
±1
לפי משפט השורש הרציונלי, כל השורשים הרציונליים של פולינום הם בצורה \frac{p}{q}, כאשר p מחלק את האיבר הקבוע -1 ו- q מחלק את המקדם המוביל 1. פרט את כל המועמדים \frac{p}{q}.
x=1
מצא שורש כזה בכך שתנסה את כל ערכי המספרים השלמים, החל מהערך הקטן ביותר לפי ערך מוחלט. אם לא נמצאו שורשי מספרים שלמים, נסה שברים.
x^{2}+x+1=0
לפי משפט הגורמים , x-k הוא גורם של הפולינום עבור כל שורש k. חלק את ‎x^{3}-1 ב- ‎x-1 כדי לקבל ‎x^{2}+x+1. פתור את המשוואה שבה התוצאה שווה ל-0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: ‎\frac{-b±\sqrt{b^{2}-4ac}}{2a}‎. החלף את ‎1 ב- a, את ‎1 ב- b ואת ‎1 ב- c בנוסחה הריבועית.
x=\frac{-1±\sqrt{-3}}{2}
בצע את החישובים.
x\in \emptyset
מאחר שהשורש הריבועי של מספר שלילי אינו מוגדר בשדה הממשי, לא קיימים פתרונות.
x=1
פרט את כל הפתרונות שנמצאו.