דילוג לתוכן העיקרי
פרק לגורמים
Tick mark Image
הערך
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

a+b=-1 ab=1\left(-30\right)=-30
פרק את הביטוי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את הביטוי כ- x^{2}+ax+bx-30. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
1,-30 2,-15 3,-10 5,-6
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא שלילי, למספר השלילי יש ערך מוחלט גדול יותר מהחיובי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
חשב את הסכום של כל צמד.
a=-6 b=5
הפתרון הוא הצמד שנותן את הסכום -1.
\left(x^{2}-6x\right)+\left(5x-30\right)
שכתב את ‎x^{2}-x-30 כ- ‎\left(x^{2}-6x\right)+\left(5x-30\right).
x\left(x-6\right)+5\left(x-6\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת 5 בקבוצה השניה.
\left(x-6\right)\left(x+5\right)
הוצא את האיבר המשותף x-6 באמצעות חוק הפילוג.
x^{2}-x-30=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎, כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-30\right)}}{2}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-\left(-1\right)±\sqrt{1+120}}{2}
הכפל את ‎-4 ב- ‎-30.
x=\frac{-\left(-1\right)±\sqrt{121}}{2}
הוסף את ‎1 ל- ‎120.
x=\frac{-\left(-1\right)±11}{2}
הוצא את השורש הריבועי של 121.
x=\frac{1±11}{2}
ההופכי של ‎-1 הוא ‎1.
x=\frac{12}{2}
כעת פתור את המשוואה x=\frac{1±11}{2} כאשר ± כולל סימן חיבור. הוסף את ‎1 ל- ‎11.
x=6
חלק את ‎12 ב- ‎2.
x=-\frac{10}{2}
כעת פתור את המשוואה x=\frac{1±11}{2} כאשר ± כולל סימן חיסור. החסר ‎11 מ- ‎1.
x=-5
חלק את ‎-10 ב- ‎2.
x^{2}-x-30=\left(x-6\right)\left(x-\left(-5\right)\right)
פרק את הביטוי המקורי לגורמים באמצעות ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎. השתמש ב- ‎6 במקום x_{1} וב- ‎-5 במקום x_{2}.
x^{2}-x-30=\left(x-6\right)\left(x+5\right)
פשט את כל הביטויים של הצורה ‎p-\left(-q\right)‎ ל- p+q.