דילוג לתוכן העיקרי
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

a+b=-7 ab=10
כדי לפתור את המשוואה, פרק את x^{2}-7x+10 לגורמים באמצעות הנוסחה x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,-10 -2,-5
מאחר ש- ab הוא חיובי, ל- a ול- b יש אותו סימן. מאחר ש- a+b הוא שלילי, a ו- b שניהם שליליים. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה 10.
-1-10=-11 -2-5=-7
חשב את הסכום של כל צמד.
a=-5 b=-2
הפתרון הוא הצמד שנותן את הסכום -7.
\left(x-5\right)\left(x-2\right)
שכתב את הביטוי המפורק לגורמים \left(x+a\right)\left(x+b\right) באמצעות הערכים שהתקבלו.
x=5 x=2
כדי למצוא פתרונות משוואה, פתור את x-5=0 ו- x-2=0.
a+b=-7 ab=1\times 10=10
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- x^{2}+ax+bx+10. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,-10 -2,-5
מאחר ש- ab הוא חיובי, ל- a ול- b יש אותו סימן. מאחר ש- a+b הוא שלילי, a ו- b שניהם שליליים. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה 10.
-1-10=-11 -2-5=-7
חשב את הסכום של כל צמד.
a=-5 b=-2
הפתרון הוא הצמד שנותן את הסכום -7.
\left(x^{2}-5x\right)+\left(-2x+10\right)
שכתב את ‎x^{2}-7x+10 כ- ‎\left(x^{2}-5x\right)+\left(-2x+10\right).
x\left(x-5\right)-2\left(x-5\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת -2 בקבוצה השניה.
\left(x-5\right)\left(x-2\right)
הוצא את האיבר המשותף x-5 באמצעות חוק הפילוג.
x=5 x=2
כדי למצוא פתרונות משוואה, פתור את x-5=0 ו- x-2=0.
x^{2}-7x+10=0
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 10}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- -7 במקום b, וב- 10 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 10}}{2}
‎-7 בריבוע.
x=\frac{-\left(-7\right)±\sqrt{49-40}}{2}
הכפל את ‎-4 ב- ‎10.
x=\frac{-\left(-7\right)±\sqrt{9}}{2}
הוסף את ‎49 ל- ‎-40.
x=\frac{-\left(-7\right)±3}{2}
הוצא את השורש הריבועי של 9.
x=\frac{7±3}{2}
ההופכי של ‎-7 הוא ‎7.
x=\frac{10}{2}
כעת פתור את המשוואה x=\frac{7±3}{2} כאשר ± כולל סימן חיבור. הוסף את ‎7 ל- ‎3.
x=5
חלק את ‎10 ב- ‎2.
x=\frac{4}{2}
כעת פתור את המשוואה x=\frac{7±3}{2} כאשר ± כולל סימן חיסור. החסר ‎3 מ- ‎7.
x=2
חלק את ‎4 ב- ‎2.
x=5 x=2
המשוואה נפתרה כעת.
x^{2}-7x+10=0
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
x^{2}-7x+10-10=-10
החסר ‎10 משני אגפי המשוואה.
x^{2}-7x=-10
החסרת 10 מעצמו נותנת 0.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-10+\left(-\frac{7}{2}\right)^{2}
חלק את ‎-7, המקדם של האיבר x, ב- 2 כדי לקבל ‎-\frac{7}{2}. לאחר מכן הוסף את הריבוע של -\frac{7}{2} לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}-7x+\frac{49}{4}=-10+\frac{49}{4}
העלה את ‎-\frac{7}{2} בריבוע על-ידי העלאת המונה והמכנה של השבר בריבוע.
x^{2}-7x+\frac{49}{4}=\frac{9}{4}
הוסף את ‎-10 ל- ‎\frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{9}{4}
פרק x^{2}-7x+\frac{49}{4} לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x-\frac{7}{2}=\frac{3}{2} x-\frac{7}{2}=-\frac{3}{2}
פשט.
x=5 x=2
הוסף ‎\frac{7}{2} לשני אגפי המשוואה.