דילוג לתוכן העיקרי
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

a+b=-10 ab=21
כדי לפתור את המשוואה, פרק את x^{2}-10x+21 לגורמים באמצעות הנוסחה x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,-21 -3,-7
מאחר ש- ab הוא חיובי, ל- a ול- b יש אותו סימן. מאחר ש- a+b הוא שלילי, a ו- b שניהם שליליים. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה 21.
-1-21=-22 -3-7=-10
חשב את הסכום של כל צמד.
a=-7 b=-3
הפתרון הוא הצמד שנותן את הסכום -10.
\left(x-7\right)\left(x-3\right)
שכתב את הביטוי המפורק לגורמים \left(x+a\right)\left(x+b\right) באמצעות הערכים שהתקבלו.
x=7 x=3
כדי למצוא פתרונות משוואה, פתור את x-7=0 ו- x-3=0.
a+b=-10 ab=1\times 21=21
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- x^{2}+ax+bx+21. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,-21 -3,-7
מאחר ש- ab הוא חיובי, ל- a ול- b יש אותו סימן. מאחר ש- a+b הוא שלילי, a ו- b שניהם שליליים. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה 21.
-1-21=-22 -3-7=-10
חשב את הסכום של כל צמד.
a=-7 b=-3
הפתרון הוא הצמד שנותן את הסכום -10.
\left(x^{2}-7x\right)+\left(-3x+21\right)
שכתב את ‎x^{2}-10x+21 כ- ‎\left(x^{2}-7x\right)+\left(-3x+21\right).
x\left(x-7\right)-3\left(x-7\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת -3 בקבוצה השניה.
\left(x-7\right)\left(x-3\right)
הוצא את האיבר המשותף x-7 באמצעות חוק הפילוג.
x=7 x=3
כדי למצוא פתרונות משוואה, פתור את x-7=0 ו- x-3=0.
x^{2}-10x+21=0
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 21}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- -10 במקום b, וב- 21 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 21}}{2}
‎-10 בריבוע.
x=\frac{-\left(-10\right)±\sqrt{100-84}}{2}
הכפל את ‎-4 ב- ‎21.
x=\frac{-\left(-10\right)±\sqrt{16}}{2}
הוסף את ‎100 ל- ‎-84.
x=\frac{-\left(-10\right)±4}{2}
הוצא את השורש הריבועי של 16.
x=\frac{10±4}{2}
ההופכי של ‎-10 הוא ‎10.
x=\frac{14}{2}
כעת פתור את המשוואה x=\frac{10±4}{2} כאשר ± כולל סימן חיבור. הוסף את ‎10 ל- ‎4.
x=7
חלק את ‎14 ב- ‎2.
x=\frac{6}{2}
כעת פתור את המשוואה x=\frac{10±4}{2} כאשר ± כולל סימן חיסור. החסר ‎4 מ- ‎10.
x=3
חלק את ‎6 ב- ‎2.
x=7 x=3
המשוואה נפתרה כעת.
x^{2}-10x+21=0
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
x^{2}-10x+21-21=-21
החסר ‎21 משני אגפי המשוואה.
x^{2}-10x=-21
החסרת 21 מעצמו נותנת 0.
x^{2}-10x+\left(-5\right)^{2}=-21+\left(-5\right)^{2}
חלק את ‎-10, המקדם של האיבר x, ב- 2 כדי לקבל ‎-5. לאחר מכן הוסף את הריבוע של -5 לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}-10x+25=-21+25
‎-5 בריבוע.
x^{2}-10x+25=4
הוסף את ‎-21 ל- ‎25.
\left(x-5\right)^{2}=4
פרק x^{2}-10x+25 לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{4}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x-5=2 x-5=-2
פשט.
x=7 x=3
הוסף ‎5 לשני אגפי המשוואה.