פתור עבור x
x=-8
x=4
גרף
שתף
הועתק ללוח
x^{2}+4x-32=0
החסר 32 משני האגפים.
a+b=4 ab=-32
כדי לפתור את המשוואה, פרק את x^{2}+4x-32 לגורמים באמצעות הנוסחה x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,32 -2,16 -4,8
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -32.
-1+32=31 -2+16=14 -4+8=4
חשב את הסכום של כל צמד.
a=-4 b=8
הפתרון הוא הצמד שנותן את הסכום 4.
\left(x-4\right)\left(x+8\right)
שכתב את הביטוי המפורק לגורמים \left(x+a\right)\left(x+b\right) באמצעות הערכים שהתקבלו.
x=4 x=-8
כדי למצוא פתרונות משוואה, פתור את x-4=0 ו- x+8=0.
x^{2}+4x-32=0
החסר 32 משני האגפים.
a+b=4 ab=1\left(-32\right)=-32
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- x^{2}+ax+bx-32. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,32 -2,16 -4,8
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -32.
-1+32=31 -2+16=14 -4+8=4
חשב את הסכום של כל צמד.
a=-4 b=8
הפתרון הוא הצמד שנותן את הסכום 4.
\left(x^{2}-4x\right)+\left(8x-32\right)
שכתב את x^{2}+4x-32 כ- \left(x^{2}-4x\right)+\left(8x-32\right).
x\left(x-4\right)+8\left(x-4\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת 8 בקבוצה השניה.
\left(x-4\right)\left(x+8\right)
הוצא את האיבר המשותף x-4 באמצעות חוק הפילוג.
x=4 x=-8
כדי למצוא פתרונות משוואה, פתור את x-4=0 ו- x+8=0.
x^{2}+4x=32
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x^{2}+4x-32=32-32
החסר 32 משני אגפי המשוואה.
x^{2}+4x-32=0
החסרת 32 מעצמו נותנת 0.
x=\frac{-4±\sqrt{4^{2}-4\left(-32\right)}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- 4 במקום b, וב- -32 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-32\right)}}{2}
4 בריבוע.
x=\frac{-4±\sqrt{16+128}}{2}
הכפל את -4 ב- -32.
x=\frac{-4±\sqrt{144}}{2}
הוסף את 16 ל- 128.
x=\frac{-4±12}{2}
הוצא את השורש הריבועי של 144.
x=\frac{8}{2}
כעת פתור את המשוואה x=\frac{-4±12}{2} כאשר ± כולל סימן חיבור. הוסף את -4 ל- 12.
x=4
חלק את 8 ב- 2.
x=-\frac{16}{2}
כעת פתור את המשוואה x=\frac{-4±12}{2} כאשר ± כולל סימן חיסור. החסר 12 מ- -4.
x=-8
חלק את -16 ב- 2.
x=4 x=-8
המשוואה נפתרה כעת.
x^{2}+4x=32
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
x^{2}+4x+2^{2}=32+2^{2}
חלק את 4, המקדם של האיבר x, ב- 2 כדי לקבל 2. לאחר מכן הוסף את הריבוע של 2 לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}+4x+4=32+4
2 בריבוע.
x^{2}+4x+4=36
הוסף את 32 ל- 4.
\left(x+2\right)^{2}=36
פרק x^{2}+4x+4 לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{36}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x+2=6 x+2=-6
פשט.
x=4 x=-8
החסר 2 משני אגפי המשוואה.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}