פתור עבור x
x=-13
x=1
גרף
שתף
הועתק ללוח
a+b=12 ab=-13
כדי לפתור את המשוואה, פרק את x^{2}+12x-13 לגורמים באמצעות הנוסחה x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). כדי למצוא את a ו- b, הגדר מערכת לפתרון.
a=-1 b=13
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. הצמד היחיד מסוג זה הוא פתרון המערכת.
\left(x-1\right)\left(x+13\right)
שכתב את הביטוי המפורק לגורמים \left(x+a\right)\left(x+b\right) באמצעות הערכים שהתקבלו.
x=1 x=-13
כדי למצוא פתרונות משוואה, פתור את x-1=0 ו- x+13=0.
a+b=12 ab=1\left(-13\right)=-13
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- x^{2}+ax+bx-13. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
a=-1 b=13
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. הצמד היחיד מסוג זה הוא פתרון המערכת.
\left(x^{2}-x\right)+\left(13x-13\right)
שכתב את x^{2}+12x-13 כ- \left(x^{2}-x\right)+\left(13x-13\right).
x\left(x-1\right)+13\left(x-1\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת 13 בקבוצה השניה.
\left(x-1\right)\left(x+13\right)
הוצא את האיבר המשותף x-1 באמצעות חוק הפילוג.
x=1 x=-13
כדי למצוא פתרונות משוואה, פתור את x-1=0 ו- x+13=0.
x^{2}+12x-13=0
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-12±\sqrt{12^{2}-4\left(-13\right)}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- 12 במקום b, וב- -13 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-13\right)}}{2}
12 בריבוע.
x=\frac{-12±\sqrt{144+52}}{2}
הכפל את -4 ב- -13.
x=\frac{-12±\sqrt{196}}{2}
הוסף את 144 ל- 52.
x=\frac{-12±14}{2}
הוצא את השורש הריבועי של 196.
x=\frac{2}{2}
כעת פתור את המשוואה x=\frac{-12±14}{2} כאשר ± כולל סימן חיבור. הוסף את -12 ל- 14.
x=1
חלק את 2 ב- 2.
x=-\frac{26}{2}
כעת פתור את המשוואה x=\frac{-12±14}{2} כאשר ± כולל סימן חיסור. החסר 14 מ- -12.
x=-13
חלק את -26 ב- 2.
x=1 x=-13
המשוואה נפתרה כעת.
x^{2}+12x-13=0
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
x^{2}+12x-13-\left(-13\right)=-\left(-13\right)
הוסף 13 לשני אגפי המשוואה.
x^{2}+12x=-\left(-13\right)
החסרת -13 מעצמו נותנת 0.
x^{2}+12x=13
החסר -13 מ- 0.
x^{2}+12x+6^{2}=13+6^{2}
חלק את 12, המקדם של האיבר x, ב- 2 כדי לקבל 6. לאחר מכן הוסף את הריבוע של 6 לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}+12x+36=13+36
6 בריבוע.
x^{2}+12x+36=49
הוסף את 13 ל- 36.
\left(x+6\right)^{2}=49
פרק x^{2}+12x+36 לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{49}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x+6=7 x+6=-7
פשט.
x=1 x=-13
החסר 6 משני אגפי המשוואה.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}