דילוג לתוכן העיקרי
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x^{2}-4x=0
החסר ‎4x משני האגפים.
x\left(x-4\right)=0
הוצא את הגורם המשותף x.
x=0 x=4
כדי למצוא פתרונות משוואה, פתור את x=0 ו- x-4=0.
x^{2}-4x=0
החסר ‎4x משני האגפים.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- -4 במקום b, וב- 0 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±4}{2}
הוצא את השורש הריבועי של \left(-4\right)^{2}.
x=\frac{4±4}{2}
ההופכי של ‎-4 הוא ‎4.
x=\frac{8}{2}
כעת פתור את המשוואה x=\frac{4±4}{2} כאשר ± כולל סימן חיבור. הוסף את ‎4 ל- ‎4.
x=4
חלק את ‎8 ב- ‎2.
x=\frac{0}{2}
כעת פתור את המשוואה x=\frac{4±4}{2} כאשר ± כולל סימן חיסור. החסר ‎4 מ- ‎4.
x=0
חלק את ‎0 ב- ‎2.
x=4 x=0
המשוואה נפתרה כעת.
x^{2}-4x=0
החסר ‎4x משני האגפים.
x^{2}-4x+\left(-2\right)^{2}=\left(-2\right)^{2}
חלק את ‎-4, המקדם של האיבר x, ב- 2 כדי לקבל ‎-2. לאחר מכן הוסף את הריבוע של -2 לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}-4x+4=4
‎-2 בריבוע.
\left(x-2\right)^{2}=4
פרק את ‎x^{2}-4x+4 לגורמים. באופן כללי, כאשר x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים כ- \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{4}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x-2=2 x-2=-2
פשט.
x=4 x=0
הוסף ‎2 לשני אגפי המשוואה.