פתור עבור x, y
x=-\frac{1}{2}=-0.5
y = -\frac{9}{2} = -4\frac{1}{2} = -4.5
גרף
שתף
הועתק ללוח
3x-y=3,x-y=4
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
3x-y=3
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
3x=y+3
הוסף y לשני אגפי המשוואה.
x=\frac{1}{3}\left(y+3\right)
חלק את שני האגפים ב- 3.
x=\frac{1}{3}y+1
הכפל את \frac{1}{3} ב- y+3.
\frac{1}{3}y+1-y=4
השתמש ב- \frac{y}{3}+1 במקום x במשוואה השניה, x-y=4.
-\frac{2}{3}y+1=4
הוסף את \frac{y}{3} ל- -y.
-\frac{2}{3}y=3
החסר 1 משני אגפי המשוואה.
y=-\frac{9}{2}
חלק את שני אגפי המשוואה ב- -\frac{2}{3}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=\frac{1}{3}\left(-\frac{9}{2}\right)+1
השתמש ב- -\frac{9}{2} במקום y ב- x=\frac{1}{3}y+1. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-\frac{3}{2}+1
הכפל את \frac{1}{3} ב- -\frac{9}{2} על-ידי הכפלת המונה במונה והמכנה במכנה. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=-\frac{1}{2}
הוסף את 1 ל- -\frac{3}{2}.
x=-\frac{1}{2},y=-\frac{9}{2}
המערכת נפתרה כעת.
3x-y=3,x-y=4
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}3&-1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-1\right)}&-\frac{-1}{3\left(-1\right)-\left(-1\right)}\\-\frac{1}{3\left(-1\right)-\left(-1\right)}&\frac{3}{3\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3-\frac{1}{2}\times 4\\\frac{1}{2}\times 3-\frac{3}{2}\times 4\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\\-\frac{9}{2}\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=-\frac{1}{2},y=-\frac{9}{2}
חלץ את רכיבי המטריצה x ו- y.
3x-y=3,x-y=4
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
3x-x-y+y=3-4
החסר את x-y=4 מ- 3x-y=3 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
3x-x=3-4
הוסף את -y ל- y. האיברים -y ו- y מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
2x=3-4
הוסף את 3x ל- -x.
2x=-1
הוסף את 3 ל- -4.
x=-\frac{1}{2}
חלק את שני האגפים ב- 2.
-\frac{1}{2}-y=4
השתמש ב- -\frac{1}{2} במקום x ב- x-y=4. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את y ישירות.
-y=\frac{9}{2}
הוסף \frac{1}{2} לשני אגפי המשוואה.
x=-\frac{1}{2},y=-\frac{9}{2}
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}