דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

3x-y=3,x-y=4
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
3x-y=3
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
3x=y+3
הוסף ‎y לשני אגפי המשוואה.
x=\frac{1}{3}\left(y+3\right)
חלק את שני האגפים ב- ‎3.
x=\frac{1}{3}y+1
הכפל את ‎\frac{1}{3} ב- ‎y+3.
\frac{1}{3}y+1-y=4
השתמש ב- ‎\frac{y}{3}+1 במקום ‎x במשוואה השניה, ‎x-y=4.
-\frac{2}{3}y+1=4
הוסף את ‎\frac{y}{3} ל- ‎-y.
-\frac{2}{3}y=3
החסר ‎1 משני אגפי המשוואה.
y=-\frac{9}{2}
חלק את שני אגפי המשוואה ב- ‎-\frac{2}{3}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=\frac{1}{3}\left(-\frac{9}{2}\right)+1
השתמש ב- ‎-\frac{9}{2} במקום y ב- ‎x=\frac{1}{3}y+1. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-\frac{3}{2}+1
הכפל את ‎\frac{1}{3} ב- ‎-\frac{9}{2} על-ידי הכפלת המונה במונה והמכנה במכנה. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=-\frac{1}{2}
הוסף את ‎1 ל- ‎-\frac{3}{2}.
x=-\frac{1}{2},y=-\frac{9}{2}
המערכת נפתרה כעת.
3x-y=3,x-y=4
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}3&-1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-1\right)}&-\frac{-1}{3\left(-1\right)-\left(-1\right)}\\-\frac{1}{3\left(-1\right)-\left(-1\right)}&\frac{3}{3\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3-\frac{1}{2}\times 4\\\frac{1}{2}\times 3-\frac{3}{2}\times 4\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\\-\frac{9}{2}\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=-\frac{1}{2},y=-\frac{9}{2}
חלץ את רכיבי המטריצה x ו- y.
3x-y=3,x-y=4
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
3x-x-y+y=3-4
החסר את ‎x-y=4 מ- ‎3x-y=3 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
3x-x=3-4
הוסף את ‎-y ל- ‎y. האיברים ‎-y ו- ‎y מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
2x=3-4
הוסף את ‎3x ל- ‎-x.
2x=-1
הוסף את ‎3 ל- ‎-4.
x=-\frac{1}{2}
חלק את שני האגפים ב- ‎2.
-\frac{1}{2}-y=4
השתמש ב- ‎-\frac{1}{2} במקום x ב- ‎x-y=4. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את y ישירות.
-y=\frac{9}{2}
הוסף ‎\frac{1}{2} לשני אגפי המשוואה.
x=-\frac{1}{2},y=-\frac{9}{2}
המערכת נפתרה כעת.