פתור עבור y, x
x=2
y=-5
גרף
שתף
הועתק ללוח
y-x=-7
שקול את המשוואה הראשונה. החסר x משני האגפים.
y+2x=-1
שקול את המשוואה השניה. הוסף 2x משני הצדדים.
y-x=-7,y+2x=-1
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
y-x=-7
בחר אחת מהמשוואות ופתור אותה עבור y על-ידי בידוד y בצד השמאלי של סימן השוויון.
y=x-7
הוסף x לשני אגפי המשוואה.
x-7+2x=-1
השתמש ב- x-7 במקום y במשוואה השניה, y+2x=-1.
3x-7=-1
הוסף את x ל- 2x.
3x=6
הוסף 7 לשני אגפי המשוואה.
x=2
חלק את שני האגפים ב- 3.
y=2-7
השתמש ב- 2 במקום x ב- y=x-7. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את y ישירות.
y=-5
הוסף את -7 ל- 2.
y=-5,x=2
המערכת נפתרה כעת.
y-x=-7
שקול את המשוואה הראשונה. החסר x משני האגפים.
y+2x=-1
שקול את המשוואה השניה. הוסף 2x משני הצדדים.
y-x=-7,y+2x=-1
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&-1\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-7\\-1\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&-1\\1&2\end{matrix}\right))\left(\begin{matrix}1&-1\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&2\end{matrix}\right))\left(\begin{matrix}-7\\-1\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&-1\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&2\end{matrix}\right))\left(\begin{matrix}-7\\-1\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&2\end{matrix}\right))\left(\begin{matrix}-7\\-1\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-1\right)}&-\frac{-1}{2-\left(-1\right)}\\-\frac{1}{2-\left(-1\right)}&\frac{1}{2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-7\\-1\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-7\\-1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\left(-7\right)+\frac{1}{3}\left(-1\right)\\-\frac{1}{3}\left(-7\right)+\frac{1}{3}\left(-1\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
y=-5,x=2
חלץ את רכיבי המטריצה y ו- x.
y-x=-7
שקול את המשוואה הראשונה. החסר x משני האגפים.
y+2x=-1
שקול את המשוואה השניה. הוסף 2x משני הצדדים.
y-x=-7,y+2x=-1
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
y-y-x-2x=-7+1
החסר את y+2x=-1 מ- y-x=-7 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-x-2x=-7+1
הוסף את y ל- -y. האיברים y ו- -y מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-3x=-7+1
הוסף את -x ל- -2x.
-3x=-6
הוסף את -7 ל- 1.
x=2
חלק את שני האגפים ב- -3.
y+2\times 2=-1
השתמש ב- 2 במקום x ב- y+2x=-1. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את y ישירות.
y+4=-1
הכפל את 2 ב- 2.
y=-5
החסר 4 משני אגפי המשוואה.
y=-5,x=2
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}