פתור עבור y, x
x=-1
y=-1
גרף
שתף
הועתק ללוח
y-5x=4
שקול את המשוואה הראשונה. החסר 5x משני האגפים.
y+2x=-3
שקול את המשוואה השניה. הוסף 2x משני הצדדים.
y-5x=4,y+2x=-3
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
y-5x=4
בחר אחת מהמשוואות ופתור אותה עבור y על-ידי בידוד y בצד השמאלי של סימן השוויון.
y=5x+4
הוסף 5x לשני אגפי המשוואה.
5x+4+2x=-3
השתמש ב- 5x+4 במקום y במשוואה השניה, y+2x=-3.
7x+4=-3
הוסף את 5x ל- 2x.
7x=-7
החסר 4 משני אגפי המשוואה.
x=-1
חלק את שני האגפים ב- 7.
y=5\left(-1\right)+4
השתמש ב- -1 במקום x ב- y=5x+4. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את y ישירות.
y=-5+4
הכפל את 5 ב- -1.
y=-1
הוסף את 4 ל- -5.
y=-1,x=-1
המערכת נפתרה כעת.
y-5x=4
שקול את המשוואה הראשונה. החסר 5x משני האגפים.
y+2x=-3
שקול את המשוואה השניה. הוסף 2x משני הצדדים.
y-5x=4,y+2x=-3
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&-5\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&-5\\1&2\end{matrix}\right))\left(\begin{matrix}1&-5\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\1&2\end{matrix}\right))\left(\begin{matrix}4\\-3\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&-5\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\1&2\end{matrix}\right))\left(\begin{matrix}4\\-3\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\1&2\end{matrix}\right))\left(\begin{matrix}4\\-3\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-5\right)}&-\frac{-5}{2-\left(-5\right)}\\-\frac{1}{2-\left(-5\right)}&\frac{1}{2-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}4\\-3\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{5}{7}\\-\frac{1}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}4\\-3\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 4+\frac{5}{7}\left(-3\right)\\-\frac{1}{7}\times 4+\frac{1}{7}\left(-3\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1\\-1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
y=-1,x=-1
חלץ את רכיבי המטריצה y ו- x.
y-5x=4
שקול את המשוואה הראשונה. החסר 5x משני האגפים.
y+2x=-3
שקול את המשוואה השניה. הוסף 2x משני הצדדים.
y-5x=4,y+2x=-3
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
y-y-5x-2x=4+3
החסר את y+2x=-3 מ- y-5x=4 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-5x-2x=4+3
הוסף את y ל- -y. האיברים y ו- -y מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-7x=4+3
הוסף את -5x ל- -2x.
-7x=7
הוסף את 4 ל- 3.
x=-1
חלק את שני האגפים ב- -7.
y+2\left(-1\right)=-3
השתמש ב- -1 במקום x ב- y+2x=-3. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את y ישירות.
y-2=-3
הכפל את 2 ב- -1.
y=-1
הוסף 2 לשני אגפי המשוואה.
y=-1,x=-1
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}