פתור עבור y, x
x=-7
y=-23
גרף
שתף
הועתק ללוח
y-4x=5
שקול את המשוואה הראשונה. החסר 4x משני האגפים.
y-2x=-9
שקול את המשוואה השניה. החסר 2x משני האגפים.
y-4x=5,y-2x=-9
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
y-4x=5
בחר אחת מהמשוואות ופתור אותה עבור y על-ידי בידוד y בצד השמאלי של סימן השוויון.
y=4x+5
הוסף 4x לשני אגפי המשוואה.
4x+5-2x=-9
השתמש ב- 4x+5 במקום y במשוואה השניה, y-2x=-9.
2x+5=-9
הוסף את 4x ל- -2x.
2x=-14
החסר 5 משני אגפי המשוואה.
x=-7
חלק את שני האגפים ב- 2.
y=4\left(-7\right)+5
השתמש ב- -7 במקום x ב- y=4x+5. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את y ישירות.
y=-28+5
הכפל את 4 ב- -7.
y=-23
הוסף את 5 ל- -28.
y=-23,x=-7
המערכת נפתרה כעת.
y-4x=5
שקול את המשוואה הראשונה. החסר 4x משני האגפים.
y-2x=-9
שקול את המשוואה השניה. החסר 2x משני האגפים.
y-4x=5,y-2x=-9
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&-4\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\-9\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&-4\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-4\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&-4\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-4\right)}&-\frac{-4}{-2-\left(-4\right)}\\-\frac{1}{-2-\left(-4\right)}&\frac{1}{-2-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}5\\-9\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1&2\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}5\\-9\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5+2\left(-9\right)\\-\frac{1}{2}\times 5+\frac{1}{2}\left(-9\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-23\\-7\end{matrix}\right)
בצע את הפעולות האריתמטיות.
y=-23,x=-7
חלץ את רכיבי המטריצה y ו- x.
y-4x=5
שקול את המשוואה הראשונה. החסר 4x משני האגפים.
y-2x=-9
שקול את המשוואה השניה. החסר 2x משני האגפים.
y-4x=5,y-2x=-9
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
y-y-4x+2x=5+9
החסר את y-2x=-9 מ- y-4x=5 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-4x+2x=5+9
הוסף את y ל- -y. האיברים y ו- -y מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-2x=5+9
הוסף את -4x ל- 2x.
-2x=14
הוסף את 5 ל- 9.
x=-7
חלק את שני האגפים ב- -2.
y-2\left(-7\right)=-9
השתמש ב- -7 במקום x ב- y-2x=-9. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את y ישירות.
y+14=-9
הכפל את -2 ב- -7.
y=-23
החסר 14 משני אגפי המשוואה.
y=-23,x=-7
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}