פתור עבור y, x
x=-1
y=1
גרף
שתף
הועתק ללוח
y+4x=-3
שקול את המשוואה הראשונה. הוסף 4x משני הצדדים.
y-x=2
שקול את המשוואה השניה. החסר x משני האגפים.
y+4x=-3,y-x=2
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
y+4x=-3
בחר אחת מהמשוואות ופתור אותה עבור y על-ידי בידוד y בצד השמאלי של סימן השוויון.
y=-4x-3
החסר 4x משני אגפי המשוואה.
-4x-3-x=2
השתמש ב- -4x-3 במקום y במשוואה השניה, y-x=2.
-5x-3=2
הוסף את -4x ל- -x.
-5x=5
הוסף 3 לשני אגפי המשוואה.
x=-1
חלק את שני האגפים ב- -5.
y=-4\left(-1\right)-3
השתמש ב- -1 במקום x ב- y=-4x-3. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את y ישירות.
y=4-3
הכפל את -4 ב- -1.
y=1
הוסף את -3 ל- 4.
y=1,x=-1
המערכת נפתרה כעת.
y+4x=-3
שקול את המשוואה הראשונה. הוסף 4x משני הצדדים.
y-x=2
שקול את המשוואה השניה. החסר x משני האגפים.
y+4x=-3,y-x=2
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&4\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&4\\1&-1\end{matrix}\right))\left(\begin{matrix}1&4\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&-1\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&4\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&-1\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&-1\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-4}&-\frac{4}{-1-4}\\-\frac{1}{-1-4}&\frac{1}{-1-4}\end{matrix}\right)\left(\begin{matrix}-3\\2\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{4}{5}\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-3\\2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-3\right)+\frac{4}{5}\times 2\\\frac{1}{5}\left(-3\right)-\frac{1}{5}\times 2\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
y=1,x=-1
חלץ את רכיבי המטריצה y ו- x.
y+4x=-3
שקול את המשוואה הראשונה. הוסף 4x משני הצדדים.
y-x=2
שקול את המשוואה השניה. החסר x משני האגפים.
y+4x=-3,y-x=2
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
y-y+4x+x=-3-2
החסר את y-x=2 מ- y+4x=-3 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
4x+x=-3-2
הוסף את y ל- -y. האיברים y ו- -y מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
5x=-3-2
הוסף את 4x ל- x.
5x=-5
הוסף את -3 ל- -2.
x=-1
חלק את שני האגפים ב- 5.
y-\left(-1\right)=2
השתמש ב- -1 במקום x ב- y-x=2. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את y ישירות.
y+1=2
הכפל את -1 ב- -1.
y=1
החסר 1 משני אגפי המשוואה.
y=1,x=-1
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}