פתור עבור x, y
x=-1
y=5
גרף
שתף
הועתק ללוח
y+3x=2
שקול את המשוואה השניה. הוסף 3x משני הצדדים.
x-y=-6,3x+y=2
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x-y=-6
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=y-6
הוסף y לשני אגפי המשוואה.
3\left(y-6\right)+y=2
השתמש ב- y-6 במקום x במשוואה השניה, 3x+y=2.
3y-18+y=2
הכפל את 3 ב- y-6.
4y-18=2
הוסף את 3y ל- y.
4y=20
הוסף 18 לשני אגפי המשוואה.
y=5
חלק את שני האגפים ב- 4.
x=5-6
השתמש ב- 5 במקום y ב- x=y-6. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-1
הוסף את -6 ל- 5.
x=-1,y=5
המערכת נפתרה כעת.
y+3x=2
שקול את המשוואה השניה. הוסף 3x משני הצדדים.
x-y=-6,3x+y=2
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\2\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}1&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}-6\\2\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&-1\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}-6\\2\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}-6\\2\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{-1}{1-\left(-3\right)}\\-\frac{3}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-6\\2\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-6\\2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-6\right)+\frac{1}{4}\times 2\\-\frac{3}{4}\left(-6\right)+\frac{1}{4}\times 2\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\5\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=-1,y=5
חלץ את רכיבי המטריצה x ו- y.
y+3x=2
שקול את המשוואה השניה. הוסף 3x משני הצדדים.
x-y=-6,3x+y=2
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
3x+3\left(-1\right)y=3\left(-6\right),3x+y=2
כדי להפוך את x ו- 3x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 3 ואת כל האיברים בכל אגף של המשוואה השניה ב- 1.
3x-3y=-18,3x+y=2
פשט.
3x-3x-3y-y=-18-2
החסר את 3x+y=2 מ- 3x-3y=-18 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-3y-y=-18-2
הוסף את 3x ל- -3x. האיברים 3x ו- -3x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-4y=-18-2
הוסף את -3y ל- -y.
-4y=-20
הוסף את -18 ל- -2.
y=5
חלק את שני האגפים ב- -4.
3x+5=2
השתמש ב- 5 במקום y ב- 3x+y=2. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
3x=-3
החסר 5 משני אגפי המשוואה.
x=-1
חלק את שני האגפים ב- 3.
x=-1,y=5
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}