פתור עבור x, y
x=-4
y=-2
גרף
שתף
הועתק ללוח
x-4y=4,7x-7y=-14
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x-4y=4
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=4y+4
הוסף 4y לשני אגפי המשוואה.
7\left(4y+4\right)-7y=-14
השתמש ב- 4+4y במקום x במשוואה השניה, 7x-7y=-14.
28y+28-7y=-14
הכפל את 7 ב- 4+4y.
21y+28=-14
הוסף את 28y ל- -7y.
21y=-42
החסר 28 משני אגפי המשוואה.
y=-2
חלק את שני האגפים ב- 21.
x=4\left(-2\right)+4
השתמש ב- -2 במקום y ב- x=4y+4. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-8+4
הכפל את 4 ב- -2.
x=-4
הוסף את 4 ל- -8.
x=-4,y=-2
המערכת נפתרה כעת.
x-4y=4,7x-7y=-14
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-14\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right))\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right))\left(\begin{matrix}4\\-14\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&-4\\7&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right))\left(\begin{matrix}4\\-14\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right))\left(\begin{matrix}4\\-14\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-7-\left(-4\times 7\right)}&-\frac{-4}{-7-\left(-4\times 7\right)}\\-\frac{7}{-7-\left(-4\times 7\right)}&\frac{1}{-7-\left(-4\times 7\right)}\end{matrix}\right)\left(\begin{matrix}4\\-14\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{4}{21}\\-\frac{1}{3}&\frac{1}{21}\end{matrix}\right)\left(\begin{matrix}4\\-14\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 4+\frac{4}{21}\left(-14\right)\\-\frac{1}{3}\times 4+\frac{1}{21}\left(-14\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=-4,y=-2
חלץ את רכיבי המטריצה x ו- y.
x-4y=4,7x-7y=-14
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
7x+7\left(-4\right)y=7\times 4,7x-7y=-14
כדי להפוך את x ו- 7x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 7 ואת כל האיברים בכל אגף של המשוואה השניה ב- 1.
7x-28y=28,7x-7y=-14
פשט.
7x-7x-28y+7y=28+14
החסר את 7x-7y=-14 מ- 7x-28y=28 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-28y+7y=28+14
הוסף את 7x ל- -7x. האיברים 7x ו- -7x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-21y=28+14
הוסף את -28y ל- 7y.
-21y=42
הוסף את 28 ל- 14.
y=-2
חלק את שני האגפים ב- -21.
7x-7\left(-2\right)=-14
השתמש ב- -2 במקום y ב- 7x-7y=-14. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
7x+14=-14
הכפל את -7 ב- -2.
7x=-28
החסר 14 משני אגפי המשוואה.
x=-4
חלק את שני האגפים ב- 7.
x=-4,y=-2
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}