דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x-3y=3,2x+3y=6
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x-3y=3
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=3y+3
הוסף ‎3y לשני אגפי המשוואה.
2\left(3y+3\right)+3y=6
השתמש ב- ‎3+3y במקום ‎x במשוואה השניה, ‎2x+3y=6.
6y+6+3y=6
הכפל את ‎2 ב- ‎3+3y.
9y+6=6
הוסף את ‎6y ל- ‎3y.
9y=0
החסר ‎6 משני אגפי המשוואה.
y=0
חלק את שני האגפים ב- ‎9.
x=3
השתמש ב- ‎0 במקום y ב- ‎x=3y+3. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=3,y=0
המערכת נפתרה כעת.
x-3y=3,2x+3y=6
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&-3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\6\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}1&-3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&-3\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-3\times 2\right)}&-\frac{-3}{3-\left(-3\times 2\right)}\\-\frac{2}{3-\left(-3\times 2\right)}&\frac{1}{3-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}3\\6\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\-\frac{2}{9}&\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}3\\6\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 3+\frac{1}{3}\times 6\\-\frac{2}{9}\times 3+\frac{1}{9}\times 6\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=3,y=0
חלץ את רכיבי המטריצה x ו- y.
x-3y=3,2x+3y=6
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2x+2\left(-3\right)y=2\times 3,2x+3y=6
כדי להפוך את ‎x ו- ‎2x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎2 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎1.
2x-6y=6,2x+3y=6
פשט.
2x-2x-6y-3y=6-6
החסר את ‎2x+3y=6 מ- ‎2x-6y=6 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-6y-3y=6-6
הוסף את ‎2x ל- ‎-2x. האיברים ‎2x ו- ‎-2x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-9y=6-6
הוסף את ‎-6y ל- ‎-3y.
-9y=0
הוסף את ‎6 ל- ‎-6.
y=0
חלק את שני האגפים ב- ‎-9.
2x=6
השתמש ב- ‎0 במקום y ב- ‎2x+3y=6. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=3
חלק את שני האגפים ב- ‎2.
x=3,y=0
המערכת נפתרה כעת.