דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x+y=8,x+3y=14
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x+y=8
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=-y+8
החסר ‎y משני אגפי המשוואה.
-y+8+3y=14
השתמש ב- ‎-y+8 במקום ‎x במשוואה השניה, ‎x+3y=14.
2y+8=14
הוסף את ‎-y ל- ‎3y.
2y=6
החסר ‎8 משני אגפי המשוואה.
y=3
חלק את שני האגפים ב- ‎2.
x=-3+8
השתמש ב- ‎3 במקום y ב- ‎x=-y+8. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=5
הוסף את ‎8 ל- ‎-3.
x=5,y=3
המערכת נפתרה כעת.
x+y=8,x+3y=14
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\14\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&1\\1&3\end{matrix}\right))\left(\begin{matrix}1&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&3\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&1\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&3\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&3\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-1}&-\frac{1}{3-1}\\-\frac{1}{3-1}&\frac{1}{3-1}\end{matrix}\right)\left(\begin{matrix}8\\14\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&-\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}8\\14\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\times 8-\frac{1}{2}\times 14\\-\frac{1}{2}\times 8+\frac{1}{2}\times 14\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=5,y=3
חלץ את רכיבי המטריצה x ו- y.
x+y=8,x+3y=14
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
x-x+y-3y=8-14
החסר את ‎x+3y=14 מ- ‎x+y=8 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
y-3y=8-14
הוסף את ‎x ל- ‎-x. האיברים ‎x ו- ‎-x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-2y=8-14
הוסף את ‎y ל- ‎-3y.
-2y=-6
הוסף את ‎8 ל- ‎-14.
y=3
חלק את שני האגפים ב- ‎-2.
x+3\times 3=14
השתמש ב- ‎3 במקום y ב- ‎x+3y=14. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x+9=14
הכפל את ‎3 ב- ‎3.
x=5
החסר ‎9 משני אגפי המשוואה.
x=5,y=3
המערכת נפתרה כעת.