פתור עבור x, y
x=3
y=4
גרף
שתף
הועתק ללוח
x+6y=27,7x-3y=9
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x+6y=27
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=-6y+27
החסר 6y משני אגפי המשוואה.
7\left(-6y+27\right)-3y=9
השתמש ב- -6y+27 במקום x במשוואה השניה, 7x-3y=9.
-42y+189-3y=9
הכפל את 7 ב- -6y+27.
-45y+189=9
הוסף את -42y ל- -3y.
-45y=-180
החסר 189 משני אגפי המשוואה.
y=4
חלק את שני האגפים ב- -45.
x=-6\times 4+27
השתמש ב- 4 במקום y ב- x=-6y+27. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-24+27
הכפל את -6 ב- 4.
x=3
הוסף את 27 ל- -24.
x=3,y=4
המערכת נפתרה כעת.
x+6y=27,7x-3y=9
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&6\\7&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\9\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&6\\7&-3\end{matrix}\right))\left(\begin{matrix}1&6\\7&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\7&-3\end{matrix}\right))\left(\begin{matrix}27\\9\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&6\\7&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\7&-3\end{matrix}\right))\left(\begin{matrix}27\\9\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\7&-3\end{matrix}\right))\left(\begin{matrix}27\\9\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-6\times 7}&-\frac{6}{-3-6\times 7}\\-\frac{7}{-3-6\times 7}&\frac{1}{-3-6\times 7}\end{matrix}\right)\left(\begin{matrix}27\\9\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}&\frac{2}{15}\\\frac{7}{45}&-\frac{1}{45}\end{matrix}\right)\left(\begin{matrix}27\\9\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}\times 27+\frac{2}{15}\times 9\\\frac{7}{45}\times 27-\frac{1}{45}\times 9\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=3,y=4
חלץ את רכיבי המטריצה x ו- y.
x+6y=27,7x-3y=9
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
7x+7\times 6y=7\times 27,7x-3y=9
כדי להפוך את x ו- 7x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 7 ואת כל האיברים בכל אגף של המשוואה השניה ב- 1.
7x+42y=189,7x-3y=9
פשט.
7x-7x+42y+3y=189-9
החסר את 7x-3y=9 מ- 7x+42y=189 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
42y+3y=189-9
הוסף את 7x ל- -7x. האיברים 7x ו- -7x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
45y=189-9
הוסף את 42y ל- 3y.
45y=180
הוסף את 189 ל- -9.
y=4
חלק את שני האגפים ב- 45.
7x-3\times 4=9
השתמש ב- 4 במקום y ב- 7x-3y=9. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
7x-12=9
הכפל את -3 ב- 4.
7x=21
הוסף 12 לשני אגפי המשוואה.
x=3
חלק את שני האגפים ב- 7.
x=3,y=4
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}