פתור עבור x, y
x = \frac{20}{7} = 2\frac{6}{7} \approx 2.857142857
y = \frac{25}{7} = 3\frac{4}{7} \approx 3.571428571
גרף
שתף
הועתק ללוח
x+2y=10,-2x+3y=5
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x+2y=10
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=-2y+10
החסר 2y משני אגפי המשוואה.
-2\left(-2y+10\right)+3y=5
השתמש ב- -2y+10 במקום x במשוואה השניה, -2x+3y=5.
4y-20+3y=5
הכפל את -2 ב- -2y+10.
7y-20=5
הוסף את 4y ל- 3y.
7y=25
הוסף 20 לשני אגפי המשוואה.
y=\frac{25}{7}
חלק את שני האגפים ב- 7.
x=-2\times \frac{25}{7}+10
השתמש ב- \frac{25}{7} במקום y ב- x=-2y+10. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-\frac{50}{7}+10
הכפל את -2 ב- \frac{25}{7}.
x=\frac{20}{7}
הוסף את 10 ל- -\frac{50}{7}.
x=\frac{20}{7},y=\frac{25}{7}
המערכת נפתרה כעת.
x+2y=10,-2x+3y=5
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&2\\-2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\5\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&2\\-2&3\end{matrix}\right))\left(\begin{matrix}1&2\\-2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&3\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&2\\-2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&3\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&3\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2\left(-2\right)}&-\frac{2}{3-2\left(-2\right)}\\-\frac{-2}{3-2\left(-2\right)}&\frac{1}{3-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&-\frac{2}{7}\\\frac{2}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\times 10-\frac{2}{7}\times 5\\\frac{2}{7}\times 10+\frac{1}{7}\times 5\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{7}\\\frac{25}{7}\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=\frac{20}{7},y=\frac{25}{7}
חלץ את רכיבי המטריצה x ו- y.
x+2y=10,-2x+3y=5
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
-2x-2\times 2y=-2\times 10,-2x+3y=5
כדי להפוך את x ו- -2x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- -2 ואת כל האיברים בכל אגף של המשוואה השניה ב- 1.
-2x-4y=-20,-2x+3y=5
פשט.
-2x+2x-4y-3y=-20-5
החסר את -2x+3y=5 מ- -2x-4y=-20 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-4y-3y=-20-5
הוסף את -2x ל- 2x. האיברים -2x ו- 2x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-7y=-20-5
הוסף את -4y ל- -3y.
-7y=-25
הוסף את -20 ל- -5.
y=\frac{25}{7}
חלק את שני האגפים ב- -7.
-2x+3\times \frac{25}{7}=5
השתמש ב- \frac{25}{7} במקום y ב- -2x+3y=5. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
-2x+\frac{75}{7}=5
הכפל את 3 ב- \frac{25}{7}.
-2x=-\frac{40}{7}
החסר \frac{75}{7} משני אגפי המשוואה.
x=\frac{20}{7}
חלק את שני האגפים ב- -2.
x=\frac{20}{7},y=\frac{25}{7}
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}