פתור עבור x, y
x=5
y=20
גרף
שתף
הועתק ללוח
x+15-y=0
שקול את המשוואה הראשונה. החסר y משני האגפים.
x-y=-15
החסר 15 משני האגפים. כל מספר המוחסר מאפס נותן את השלילה שלו.
4x-y=0
שקול את המשוואה השניה. החסר y משני האגפים.
x-y=-15,4x-y=0
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x-y=-15
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=y-15
הוסף y לשני אגפי המשוואה.
4\left(y-15\right)-y=0
השתמש ב- y-15 במקום x במשוואה השניה, 4x-y=0.
4y-60-y=0
הכפל את 4 ב- y-15.
3y-60=0
הוסף את 4y ל- -y.
3y=60
הוסף 60 לשני אגפי המשוואה.
y=20
חלק את שני האגפים ב- 3.
x=20-15
השתמש ב- 20 במקום y ב- x=y-15. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=5
הוסף את -15 ל- 20.
x=5,y=20
המערכת נפתרה כעת.
x+15-y=0
שקול את המשוואה הראשונה. החסר y משני האגפים.
x-y=-15
החסר 15 משני האגפים. כל מספר המוחסר מאפס נותן את השלילה שלו.
4x-y=0
שקול את המשוואה השניה. החסר y משני האגפים.
x-y=-15,4x-y=0
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-15\\0\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}-15\\0\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&-1\\4&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}-15\\0\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}-15\\0\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-4\right)}&-\frac{-1}{-1-\left(-4\right)}\\-\frac{4}{-1-\left(-4\right)}&\frac{1}{-1-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-15\\0\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{3}\\-\frac{4}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-15\\0\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-15\right)\\-\frac{4}{3}\left(-15\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\20\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=5,y=20
חלץ את רכיבי המטריצה x ו- y.
x+15-y=0
שקול את המשוואה הראשונה. החסר y משני האגפים.
x-y=-15
החסר 15 משני האגפים. כל מספר המוחסר מאפס נותן את השלילה שלו.
4x-y=0
שקול את המשוואה השניה. החסר y משני האגפים.
x-y=-15,4x-y=0
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
x-4x-y+y=-15
החסר את 4x-y=0 מ- x-y=-15 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
x-4x=-15
הוסף את -y ל- y. האיברים -y ו- y מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-3x=-15
הוסף את x ל- -4x.
x=5
חלק את שני האגפים ב- -3.
4\times 5-y=0
השתמש ב- 5 במקום x ב- 4x-y=0. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את y ישירות.
20-y=0
הכפל את 4 ב- 5.
-y=-20
החסר 20 משני אגפי המשוואה.
y=20
חלק את שני האגפים ב- -1.
x=5,y=20
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}