פתור עבור x, y
x=1
y=-6
גרף
שתף
הועתק ללוח
6x+2y=-6,3x-y=9
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
6x+2y=-6
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
6x=-2y-6
החסר 2y משני אגפי המשוואה.
x=\frac{1}{6}\left(-2y-6\right)
חלק את שני האגפים ב- 6.
x=-\frac{1}{3}y-1
הכפל את \frac{1}{6} ב- -2y-6.
3\left(-\frac{1}{3}y-1\right)-y=9
השתמש ב- -\frac{y}{3}-1 במקום x במשוואה השניה, 3x-y=9.
-y-3-y=9
הכפל את 3 ב- -\frac{y}{3}-1.
-2y-3=9
הוסף את -y ל- -y.
-2y=12
הוסף 3 לשני אגפי המשוואה.
y=-6
חלק את שני האגפים ב- -2.
x=-\frac{1}{3}\left(-6\right)-1
השתמש ב- -6 במקום y ב- x=-\frac{1}{3}y-1. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=2-1
הכפל את -\frac{1}{3} ב- -6.
x=1
הוסף את -1 ל- 2.
x=1,y=-6
המערכת נפתרה כעת.
6x+2y=-6,3x-y=9
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}6&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\9\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}6&2\\3&-1\end{matrix}\right))\left(\begin{matrix}6&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&-1\end{matrix}\right))\left(\begin{matrix}-6\\9\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}6&2\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&-1\end{matrix}\right))\left(\begin{matrix}-6\\9\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&-1\end{matrix}\right))\left(\begin{matrix}-6\\9\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6\left(-1\right)-2\times 3}&-\frac{2}{6\left(-1\right)-2\times 3}\\-\frac{3}{6\left(-1\right)-2\times 3}&\frac{6}{6\left(-1\right)-2\times 3}\end{matrix}\right)\left(\begin{matrix}-6\\9\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&\frac{1}{6}\\\frac{1}{4}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-6\\9\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\left(-6\right)+\frac{1}{6}\times 9\\\frac{1}{4}\left(-6\right)-\frac{1}{2}\times 9\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-6\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=1,y=-6
חלץ את רכיבי המטריצה x ו- y.
6x+2y=-6,3x-y=9
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
3\times 6x+3\times 2y=3\left(-6\right),6\times 3x+6\left(-1\right)y=6\times 9
כדי להפוך את 6x ו- 3x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 3 ואת כל האיברים בכל אגף של המשוואה השניה ב- 6.
18x+6y=-18,18x-6y=54
פשט.
18x-18x+6y+6y=-18-54
החסר את 18x-6y=54 מ- 18x+6y=-18 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
6y+6y=-18-54
הוסף את 18x ל- -18x. האיברים 18x ו- -18x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
12y=-18-54
הוסף את 6y ל- 6y.
12y=-72
הוסף את -18 ל- -54.
y=-6
חלק את שני האגפים ב- 12.
3x-\left(-6\right)=9
השתמש ב- -6 במקום y ב- 3x-y=9. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
3x=3
החסר 6 משני אגפי המשוואה.
x=1
חלק את שני האגפים ב- 3.
x=1,y=-6
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}