פתור עבור x, y
x=2
y=4
גרף
שתף
הועתק ללוח
5x-y=6,3x-4y=-10
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
5x-y=6
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
5x=y+6
הוסף y לשני אגפי המשוואה.
x=\frac{1}{5}\left(y+6\right)
חלק את שני האגפים ב- 5.
x=\frac{1}{5}y+\frac{6}{5}
הכפל את \frac{1}{5} ב- y+6.
3\left(\frac{1}{5}y+\frac{6}{5}\right)-4y=-10
השתמש ב- \frac{6+y}{5} במקום x במשוואה השניה, 3x-4y=-10.
\frac{3}{5}y+\frac{18}{5}-4y=-10
הכפל את 3 ב- \frac{6+y}{5}.
-\frac{17}{5}y+\frac{18}{5}=-10
הוסף את \frac{3y}{5} ל- -4y.
-\frac{17}{5}y=-\frac{68}{5}
החסר \frac{18}{5} משני אגפי המשוואה.
y=4
חלק את שני אגפי המשוואה ב- -\frac{17}{5}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=\frac{1}{5}\times 4+\frac{6}{5}
השתמש ב- 4 במקום y ב- x=\frac{1}{5}y+\frac{6}{5}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=\frac{4+6}{5}
הכפל את \frac{1}{5} ב- 4.
x=2
הוסף את \frac{6}{5} ל- \frac{4}{5} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=2,y=4
המערכת נפתרה כעת.
5x-y=6,3x-4y=-10
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}5&-1\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-10\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}5&-1\\3&-4\end{matrix}\right))\left(\begin{matrix}5&-1\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\3&-4\end{matrix}\right))\left(\begin{matrix}6\\-10\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}5&-1\\3&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\3&-4\end{matrix}\right))\left(\begin{matrix}6\\-10\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\3&-4\end{matrix}\right))\left(\begin{matrix}6\\-10\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{5\left(-4\right)-\left(-3\right)}&-\frac{-1}{5\left(-4\right)-\left(-3\right)}\\-\frac{3}{5\left(-4\right)-\left(-3\right)}&\frac{5}{5\left(-4\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}6\\-10\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}&-\frac{1}{17}\\\frac{3}{17}&-\frac{5}{17}\end{matrix}\right)\left(\begin{matrix}6\\-10\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}\times 6-\frac{1}{17}\left(-10\right)\\\frac{3}{17}\times 6-\frac{5}{17}\left(-10\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\4\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=2,y=4
חלץ את רכיבי המטריצה x ו- y.
5x-y=6,3x-4y=-10
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
3\times 5x+3\left(-1\right)y=3\times 6,5\times 3x+5\left(-4\right)y=5\left(-10\right)
כדי להפוך את 5x ו- 3x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 3 ואת כל האיברים בכל אגף של המשוואה השניה ב- 5.
15x-3y=18,15x-20y=-50
פשט.
15x-15x-3y+20y=18+50
החסר את 15x-20y=-50 מ- 15x-3y=18 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-3y+20y=18+50
הוסף את 15x ל- -15x. האיברים 15x ו- -15x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
17y=18+50
הוסף את -3y ל- 20y.
17y=68
הוסף את 18 ל- 50.
y=4
חלק את שני האגפים ב- 17.
3x-4\times 4=-10
השתמש ב- 4 במקום y ב- 3x-4y=-10. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
3x-16=-10
הכפל את -4 ב- 4.
3x=6
הוסף 16 לשני אגפי המשוואה.
x=2
חלק את שני האגפים ב- 3.
x=2,y=4
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}