פתור עבור x, y
x = \frac{45}{11} = 4\frac{1}{11} \approx 4.090909091
y = -\frac{19}{11} = -1\frac{8}{11} \approx -1.727272727
גרף
שתף
הועתק ללוח
5x+2y=17,2x+3y=3
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
5x+2y=17
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
5x=-2y+17
החסר 2y משני אגפי המשוואה.
x=\frac{1}{5}\left(-2y+17\right)
חלק את שני האגפים ב- 5.
x=-\frac{2}{5}y+\frac{17}{5}
הכפל את \frac{1}{5} ב- -2y+17.
2\left(-\frac{2}{5}y+\frac{17}{5}\right)+3y=3
השתמש ב- \frac{-2y+17}{5} במקום x במשוואה השניה, 2x+3y=3.
-\frac{4}{5}y+\frac{34}{5}+3y=3
הכפל את 2 ב- \frac{-2y+17}{5}.
\frac{11}{5}y+\frac{34}{5}=3
הוסף את -\frac{4y}{5} ל- 3y.
\frac{11}{5}y=-\frac{19}{5}
החסר \frac{34}{5} משני אגפי המשוואה.
y=-\frac{19}{11}
חלק את שני אגפי המשוואה ב- \frac{11}{5}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=-\frac{2}{5}\left(-\frac{19}{11}\right)+\frac{17}{5}
השתמש ב- -\frac{19}{11} במקום y ב- x=-\frac{2}{5}y+\frac{17}{5}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=\frac{38}{55}+\frac{17}{5}
הכפל את -\frac{2}{5} ב- -\frac{19}{11} על-ידי הכפלת המונה במונה והמכנה במכנה. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=\frac{45}{11}
הוסף את \frac{17}{5} ל- \frac{38}{55} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=\frac{45}{11},y=-\frac{19}{11}
המערכת נפתרה כעת.
5x+2y=17,2x+3y=3
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}5&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\3\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}5&2\\2&3\end{matrix}\right))\left(\begin{matrix}5&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&3\end{matrix}\right))\left(\begin{matrix}17\\3\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}5&2\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&3\end{matrix}\right))\left(\begin{matrix}17\\3\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&3\end{matrix}\right))\left(\begin{matrix}17\\3\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-2\times 2}&-\frac{2}{5\times 3-2\times 2}\\-\frac{2}{5\times 3-2\times 2}&\frac{5}{5\times 3-2\times 2}\end{matrix}\right)\left(\begin{matrix}17\\3\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&-\frac{2}{11}\\-\frac{2}{11}&\frac{5}{11}\end{matrix}\right)\left(\begin{matrix}17\\3\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 17-\frac{2}{11}\times 3\\-\frac{2}{11}\times 17+\frac{5}{11}\times 3\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{45}{11}\\-\frac{19}{11}\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=\frac{45}{11},y=-\frac{19}{11}
חלץ את רכיבי המטריצה x ו- y.
5x+2y=17,2x+3y=3
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2\times 5x+2\times 2y=2\times 17,5\times 2x+5\times 3y=5\times 3
כדי להפוך את 5x ו- 2x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 2 ואת כל האיברים בכל אגף של המשוואה השניה ב- 5.
10x+4y=34,10x+15y=15
פשט.
10x-10x+4y-15y=34-15
החסר את 10x+15y=15 מ- 10x+4y=34 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
4y-15y=34-15
הוסף את 10x ל- -10x. האיברים 10x ו- -10x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-11y=34-15
הוסף את 4y ל- -15y.
-11y=19
הוסף את 34 ל- -15.
y=-\frac{19}{11}
חלק את שני האגפים ב- -11.
2x+3\left(-\frac{19}{11}\right)=3
השתמש ב- -\frac{19}{11} במקום y ב- 2x+3y=3. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
2x-\frac{57}{11}=3
הכפל את 3 ב- -\frac{19}{11}.
2x=\frac{90}{11}
הוסף \frac{57}{11} לשני אגפי המשוואה.
x=\frac{45}{11}
חלק את שני האגפים ב- 2.
x=\frac{45}{11},y=-\frac{19}{11}
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}