דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

4x+y=8,x-y=2
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
4x+y=8
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
4x=-y+8
החסר ‎y משני אגפי המשוואה.
x=\frac{1}{4}\left(-y+8\right)
חלק את שני האגפים ב- ‎4.
x=-\frac{1}{4}y+2
הכפל את ‎\frac{1}{4} ב- ‎-y+8.
-\frac{1}{4}y+2-y=2
השתמש ב- ‎-\frac{y}{4}+2 במקום ‎x במשוואה השניה, ‎x-y=2.
-\frac{5}{4}y+2=2
הוסף את ‎-\frac{y}{4} ל- ‎-y.
-\frac{5}{4}y=0
החסר ‎2 משני אגפי המשוואה.
y=0
חלק את שני אגפי המשוואה ב- ‎-\frac{5}{4}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=2
השתמש ב- ‎0 במקום y ב- ‎x=-\frac{1}{4}y+2. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=2,y=0
המערכת נפתרה כעת.
4x+y=8,x-y=2
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}4&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\2\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}4&1\\1&-1\end{matrix}\right))\left(\begin{matrix}4&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\1&-1\end{matrix}\right))\left(\begin{matrix}8\\2\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}4&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\1&-1\end{matrix}\right))\left(\begin{matrix}8\\2\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\1&-1\end{matrix}\right))\left(\begin{matrix}8\\2\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-1}&-\frac{1}{4\left(-1\right)-1}\\-\frac{1}{4\left(-1\right)-1}&\frac{4}{4\left(-1\right)-1}\end{matrix}\right)\left(\begin{matrix}8\\2\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\\frac{1}{5}&-\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}8\\2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 8+\frac{1}{5}\times 2\\\frac{1}{5}\times 8-\frac{4}{5}\times 2\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=2,y=0
חלץ את רכיבי המטריצה x ו- y.
4x+y=8,x-y=2
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
4x+y=8,4x+4\left(-1\right)y=4\times 2
כדי להפוך את ‎4x ו- ‎x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎1 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎4.
4x+y=8,4x-4y=8
פשט.
4x-4x+y+4y=8-8
החסר את ‎4x-4y=8 מ- ‎4x+y=8 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
y+4y=8-8
הוסף את ‎4x ל- ‎-4x. האיברים ‎4x ו- ‎-4x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
5y=8-8
הוסף את ‎y ל- ‎4y.
5y=0
הוסף את ‎8 ל- ‎-8.
y=0
חלק את שני האגפים ב- ‎5.
x=2
השתמש ב- ‎0 במקום y ב- ‎x-y=2. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=2,y=0
המערכת נפתרה כעת.