פתור עבור x, y
x=1
y=3
גרף
שתף
הועתק ללוח
4x+y=7,3x+2y=9
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
4x+y=7
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
4x=-y+7
החסר y משני אגפי המשוואה.
x=\frac{1}{4}\left(-y+7\right)
חלק את שני האגפים ב- 4.
x=-\frac{1}{4}y+\frac{7}{4}
הכפל את \frac{1}{4} ב- -y+7.
3\left(-\frac{1}{4}y+\frac{7}{4}\right)+2y=9
השתמש ב- \frac{-y+7}{4} במקום x במשוואה השניה, 3x+2y=9.
-\frac{3}{4}y+\frac{21}{4}+2y=9
הכפל את 3 ב- \frac{-y+7}{4}.
\frac{5}{4}y+\frac{21}{4}=9
הוסף את -\frac{3y}{4} ל- 2y.
\frac{5}{4}y=\frac{15}{4}
החסר \frac{21}{4} משני אגפי המשוואה.
y=3
חלק את שני אגפי המשוואה ב- \frac{5}{4}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=-\frac{1}{4}\times 3+\frac{7}{4}
השתמש ב- 3 במקום y ב- x=-\frac{1}{4}y+\frac{7}{4}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=\frac{-3+7}{4}
הכפל את -\frac{1}{4} ב- 3.
x=1
הוסף את \frac{7}{4} ל- -\frac{3}{4} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=1,y=3
המערכת נפתרה כעת.
4x+y=7,3x+2y=9
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}4&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\9\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}4&1\\3&2\end{matrix}\right))\left(\begin{matrix}4&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\3&2\end{matrix}\right))\left(\begin{matrix}7\\9\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}4&1\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\3&2\end{matrix}\right))\left(\begin{matrix}7\\9\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\3&2\end{matrix}\right))\left(\begin{matrix}7\\9\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-3}&-\frac{1}{4\times 2-3}\\-\frac{3}{4\times 2-3}&\frac{4}{4\times 2-3}\end{matrix}\right)\left(\begin{matrix}7\\9\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{1}{5}\\-\frac{3}{5}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}7\\9\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 7-\frac{1}{5}\times 9\\-\frac{3}{5}\times 7+\frac{4}{5}\times 9\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=1,y=3
חלץ את רכיבי המטריצה x ו- y.
4x+y=7,3x+2y=9
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
3\times 4x+3y=3\times 7,4\times 3x+4\times 2y=4\times 9
כדי להפוך את 4x ו- 3x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 3 ואת כל האיברים בכל אגף של המשוואה השניה ב- 4.
12x+3y=21,12x+8y=36
פשט.
12x-12x+3y-8y=21-36
החסר את 12x+8y=36 מ- 12x+3y=21 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
3y-8y=21-36
הוסף את 12x ל- -12x. האיברים 12x ו- -12x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-5y=21-36
הוסף את 3y ל- -8y.
-5y=-15
הוסף את 21 ל- -36.
y=3
חלק את שני האגפים ב- -5.
3x+2\times 3=9
השתמש ב- 3 במקום y ב- 3x+2y=9. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
3x+6=9
הכפל את 2 ב- 3.
3x=3
החסר 6 משני אגפי המשוואה.
x=1
חלק את שני האגפים ב- 3.
x=1,y=3
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}