פתור עבור x, y
x=7
y=0
גרף
שתף
הועתק ללוח
4x+9y=28,-4x-y=-28
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
4x+9y=28
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
4x=-9y+28
החסר 9y משני אגפי המשוואה.
x=\frac{1}{4}\left(-9y+28\right)
חלק את שני האגפים ב- 4.
x=-\frac{9}{4}y+7
הכפל את \frac{1}{4} ב- -9y+28.
-4\left(-\frac{9}{4}y+7\right)-y=-28
השתמש ב- -\frac{9y}{4}+7 במקום x במשוואה השניה, -4x-y=-28.
9y-28-y=-28
הכפל את -4 ב- -\frac{9y}{4}+7.
8y-28=-28
הוסף את 9y ל- -y.
8y=0
הוסף 28 לשני אגפי המשוואה.
y=0
חלק את שני האגפים ב- 8.
x=7
השתמש ב- 0 במקום y ב- x=-\frac{9}{4}y+7. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=7,y=0
המערכת נפתרה כעת.
4x+9y=28,-4x-y=-28
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}4&9\\-4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\-28\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}4&9\\-4&-1\end{matrix}\right))\left(\begin{matrix}4&9\\-4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&9\\-4&-1\end{matrix}\right))\left(\begin{matrix}28\\-28\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}4&9\\-4&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&9\\-4&-1\end{matrix}\right))\left(\begin{matrix}28\\-28\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&9\\-4&-1\end{matrix}\right))\left(\begin{matrix}28\\-28\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-9\left(-4\right)}&-\frac{9}{4\left(-1\right)-9\left(-4\right)}\\-\frac{-4}{4\left(-1\right)-9\left(-4\right)}&\frac{4}{4\left(-1\right)-9\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}28\\-28\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{32}&-\frac{9}{32}\\\frac{1}{8}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}28\\-28\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{32}\times 28-\frac{9}{32}\left(-28\right)\\\frac{1}{8}\times 28+\frac{1}{8}\left(-28\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\0\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=7,y=0
חלץ את רכיבי המטריצה x ו- y.
4x+9y=28,-4x-y=-28
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
-4\times 4x-4\times 9y=-4\times 28,4\left(-4\right)x+4\left(-1\right)y=4\left(-28\right)
כדי להפוך את 4x ו- -4x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- -4 ואת כל האיברים בכל אגף של המשוואה השניה ב- 4.
-16x-36y=-112,-16x-4y=-112
פשט.
-16x+16x-36y+4y=-112+112
החסר את -16x-4y=-112 מ- -16x-36y=-112 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
-36y+4y=-112+112
הוסף את -16x ל- 16x. האיברים -16x ו- 16x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-32y=-112+112
הוסף את -36y ל- 4y.
-32y=0
הוסף את -112 ל- 112.
y=0
חלק את שני האגפים ב- -32.
-4x=-28
השתמש ב- 0 במקום y ב- -4x-y=-28. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=7
חלק את שני האגפים ב- -4.
x=7,y=0
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}