פתור עבור x, y
x=-\frac{6}{13}\approx -0.461538462
y=\frac{4}{13}\approx 0.307692308
גרף
שתף
הועתק ללוח
4x+6y=0,x-5y=-2
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
4x+6y=0
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
4x=-6y
החסר 6y משני אגפי המשוואה.
x=\frac{1}{4}\left(-6\right)y
חלק את שני האגפים ב- 4.
x=-\frac{3}{2}y
הכפל את \frac{1}{4} ב- -6y.
-\frac{3}{2}y-5y=-2
השתמש ב- -\frac{3y}{2} במקום x במשוואה השניה, x-5y=-2.
-\frac{13}{2}y=-2
הוסף את -\frac{3y}{2} ל- -5y.
y=\frac{4}{13}
חלק את שני אגפי המשוואה ב- -\frac{13}{2}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=-\frac{3}{2}\times \frac{4}{13}
השתמש ב- \frac{4}{13} במקום y ב- x=-\frac{3}{2}y. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-\frac{6}{13}
הכפל את -\frac{3}{2} ב- \frac{4}{13} על-ידי הכפלת המונה במונה והמכנה במכנה. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=-\frac{6}{13},y=\frac{4}{13}
המערכת נפתרה כעת.
4x+6y=0,x-5y=-2
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}4&6\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}4&6\\1&-5\end{matrix}\right))\left(\begin{matrix}4&6\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&6\\1&-5\end{matrix}\right))\left(\begin{matrix}0\\-2\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}4&6\\1&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&6\\1&-5\end{matrix}\right))\left(\begin{matrix}0\\-2\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&6\\1&-5\end{matrix}\right))\left(\begin{matrix}0\\-2\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{4\left(-5\right)-6}&-\frac{6}{4\left(-5\right)-6}\\-\frac{1}{4\left(-5\right)-6}&\frac{4}{4\left(-5\right)-6}\end{matrix}\right)\left(\begin{matrix}0\\-2\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{26}&\frac{3}{13}\\\frac{1}{26}&-\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}0\\-2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}\left(-2\right)\\-\frac{2}{13}\left(-2\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{13}\\\frac{4}{13}\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=-\frac{6}{13},y=\frac{4}{13}
חלץ את רכיבי המטריצה x ו- y.
4x+6y=0,x-5y=-2
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
4x+6y=0,4x+4\left(-5\right)y=4\left(-2\right)
כדי להפוך את 4x ו- x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 1 ואת כל האיברים בכל אגף של המשוואה השניה ב- 4.
4x+6y=0,4x-20y=-8
פשט.
4x-4x+6y+20y=8
החסר את 4x-20y=-8 מ- 4x+6y=0 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
6y+20y=8
הוסף את 4x ל- -4x. האיברים 4x ו- -4x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
26y=8
הוסף את 6y ל- 20y.
y=\frac{4}{13}
חלק את שני האגפים ב- 26.
x-5\times \frac{4}{13}=-2
השתמש ב- \frac{4}{13} במקום y ב- x-5y=-2. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x-\frac{20}{13}=-2
הכפל את -5 ב- \frac{4}{13}.
x=-\frac{6}{13}
הוסף \frac{20}{13} לשני אגפי המשוואה.
x=-\frac{6}{13},y=\frac{4}{13}
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}