פתור עבור x, y
x=-33
y=15
גרף
שתף
הועתק ללוח
3x+7y=6,x+3y=12
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
3x+7y=6
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
3x=-7y+6
החסר 7y משני אגפי המשוואה.
x=\frac{1}{3}\left(-7y+6\right)
חלק את שני האגפים ב- 3.
x=-\frac{7}{3}y+2
הכפל את \frac{1}{3} ב- -7y+6.
-\frac{7}{3}y+2+3y=12
השתמש ב- -\frac{7y}{3}+2 במקום x במשוואה השניה, x+3y=12.
\frac{2}{3}y+2=12
הוסף את -\frac{7y}{3} ל- 3y.
\frac{2}{3}y=10
החסר 2 משני אגפי המשוואה.
y=15
חלק את שני אגפי המשוואה ב- \frac{2}{3}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=-\frac{7}{3}\times 15+2
השתמש ב- 15 במקום y ב- x=-\frac{7}{3}y+2. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-35+2
הכפל את -\frac{7}{3} ב- 15.
x=-33
הוסף את 2 ל- -35.
x=-33,y=15
המערכת נפתרה כעת.
3x+7y=6,x+3y=12
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}3&7\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\12\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}3&7\\1&3\end{matrix}\right))\left(\begin{matrix}3&7\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\1&3\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}3&7\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\1&3\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\1&3\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-7}&-\frac{7}{3\times 3-7}\\-\frac{1}{3\times 3-7}&\frac{3}{3\times 3-7}\end{matrix}\right)\left(\begin{matrix}6\\12\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&-\frac{7}{2}\\-\frac{1}{2}&\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}6\\12\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\times 6-\frac{7}{2}\times 12\\-\frac{1}{2}\times 6+\frac{3}{2}\times 12\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-33\\15\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=-33,y=15
חלץ את רכיבי המטריצה x ו- y.
3x+7y=6,x+3y=12
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
3x+7y=6,3x+3\times 3y=3\times 12
כדי להפוך את 3x ו- x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 1 ואת כל האיברים בכל אגף של המשוואה השניה ב- 3.
3x+7y=6,3x+9y=36
פשט.
3x-3x+7y-9y=6-36
החסר את 3x+9y=36 מ- 3x+7y=6 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
7y-9y=6-36
הוסף את 3x ל- -3x. האיברים 3x ו- -3x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-2y=6-36
הוסף את 7y ל- -9y.
-2y=-30
הוסף את 6 ל- -36.
y=15
חלק את שני האגפים ב- -2.
x+3\times 15=12
השתמש ב- 15 במקום y ב- x+3y=12. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x+45=12
הכפל את 3 ב- 15.
x=-33
החסר 45 משני אגפי המשוואה.
x=-33,y=15
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}