פתור עבור x, y
x=15
y=10
גרף
שתף
הועתק ללוח
3x+4y=85,x+y=25
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
3x+4y=85
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
3x=-4y+85
החסר 4y משני אגפי המשוואה.
x=\frac{1}{3}\left(-4y+85\right)
חלק את שני האגפים ב- 3.
x=-\frac{4}{3}y+\frac{85}{3}
הכפל את \frac{1}{3} ב- -4y+85.
-\frac{4}{3}y+\frac{85}{3}+y=25
השתמש ב- \frac{-4y+85}{3} במקום x במשוואה השניה, x+y=25.
-\frac{1}{3}y+\frac{85}{3}=25
הוסף את -\frac{4y}{3} ל- y.
-\frac{1}{3}y=-\frac{10}{3}
החסר \frac{85}{3} משני אגפי המשוואה.
y=10
הכפל את שני האגפים ב- -3.
x=-\frac{4}{3}\times 10+\frac{85}{3}
השתמש ב- 10 במקום y ב- x=-\frac{4}{3}y+\frac{85}{3}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=\frac{-40+85}{3}
הכפל את -\frac{4}{3} ב- 10.
x=15
הוסף את \frac{85}{3} ל- -\frac{40}{3} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=15,y=10
המערכת נפתרה כעת.
3x+4y=85,x+y=25
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}3&4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}85\\25\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}3&4\\1&1\end{matrix}\right))\left(\begin{matrix}3&4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&1\end{matrix}\right))\left(\begin{matrix}85\\25\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}3&4\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&1\end{matrix}\right))\left(\begin{matrix}85\\25\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&1\end{matrix}\right))\left(\begin{matrix}85\\25\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-4}&-\frac{4}{3-4}\\-\frac{1}{3-4}&\frac{3}{3-4}\end{matrix}\right)\left(\begin{matrix}85\\25\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&4\\1&-3\end{matrix}\right)\left(\begin{matrix}85\\25\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-85+4\times 25\\85-3\times 25\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\10\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=15,y=10
חלץ את רכיבי המטריצה x ו- y.
3x+4y=85,x+y=25
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
3x+4y=85,3x+3y=3\times 25
כדי להפוך את 3x ו- x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- 1 ואת כל האיברים בכל אגף של המשוואה השניה ב- 3.
3x+4y=85,3x+3y=75
פשט.
3x-3x+4y-3y=85-75
החסר את 3x+3y=75 מ- 3x+4y=85 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
4y-3y=85-75
הוסף את 3x ל- -3x. האיברים 3x ו- -3x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
y=85-75
הוסף את 4y ל- -3y.
y=10
הוסף את 85 ל- -75.
x+10=25
השתמש ב- 10 במקום y ב- x+y=25. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=15
החסר 10 משני אגפי המשוואה.
x=15,y=10
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}