פתור עבור x, y
x=-1
y=-4
גרף
שתף
הועתק ללוח
2x-y=2,6x-y=-2
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
2x-y=2
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
2x=y+2
הוסף y לשני אגפי המשוואה.
x=\frac{1}{2}\left(y+2\right)
חלק את שני האגפים ב- 2.
x=\frac{1}{2}y+1
הכפל את \frac{1}{2} ב- y+2.
6\left(\frac{1}{2}y+1\right)-y=-2
השתמש ב- \frac{y}{2}+1 במקום x במשוואה השניה, 6x-y=-2.
3y+6-y=-2
הכפל את 6 ב- \frac{y}{2}+1.
2y+6=-2
הוסף את 3y ל- -y.
2y=-8
החסר 6 משני אגפי המשוואה.
y=-4
חלק את שני האגפים ב- 2.
x=\frac{1}{2}\left(-4\right)+1
השתמש ב- -4 במקום y ב- x=\frac{1}{2}y+1. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-2+1
הכפל את \frac{1}{2} ב- -4.
x=-1
הוסף את 1 ל- -2.
x=-1,y=-4
המערכת נפתרה כעת.
2x-y=2,6x-y=-2
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}2&-1\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-2\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}2&-1\\6&-1\end{matrix}\right))\left(\begin{matrix}2&-1\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\6&-1\end{matrix}\right))\left(\begin{matrix}2\\-2\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}2&-1\\6&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\6&-1\end{matrix}\right))\left(\begin{matrix}2\\-2\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\6&-1\end{matrix}\right))\left(\begin{matrix}2\\-2\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-\left(-6\right)}&-\frac{-1}{2\left(-1\right)-\left(-6\right)}\\-\frac{6}{2\left(-1\right)-\left(-6\right)}&\frac{2}{2\left(-1\right)-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}2\\-2\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\-\frac{3}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}2\\-2\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 2+\frac{1}{4}\left(-2\right)\\-\frac{3}{2}\times 2+\frac{1}{2}\left(-2\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-4\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=-1,y=-4
חלץ את רכיבי המטריצה x ו- y.
2x-y=2,6x-y=-2
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
2x-6x-y+y=2+2
החסר את 6x-y=-2 מ- 2x-y=2 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
2x-6x=2+2
הוסף את -y ל- y. האיברים -y ו- y מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-4x=2+2
הוסף את 2x ל- -6x.
-4x=4
הוסף את 2 ל- 2.
x=-1
חלק את שני האגפים ב- -4.
6\left(-1\right)-y=-2
השתמש ב- -1 במקום x ב- 6x-y=-2. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את y ישירות.
-6-y=-2
הכפל את 6 ב- -1.
-y=4
הוסף 6 לשני אגפי המשוואה.
y=-4
חלק את שני האגפים ב- -1.
x=-1,y=-4
המערכת נפתרה כעת.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}